Bernhard Weschke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9351812/publications.pdf Version: 2024-02-01

REDNHADD WESCHKE

#	Article	IF	CITATIONS
1	Association of Early MRI Characteristics With Subsequent Epilepsy and Neurodevelopmental Outcomes in Children With Tuberous Sclerosis Complex. Neurology, 2022, 98, .	1.5	8
2	Prevention of Epilepsy in Infants with Tuberous Sclerosis Complex in the <scp>EPISTOP</scp> Trial. Annals of Neurology, 2021, 89, 304-314.	2.8	137
3	Early epileptiform EEG activity in infants with tuberous sclerosis complex predicts epilepsy and neurodevelopmental outcomes. Epilepsia, 2021, 62, 1208-1219.	2.6	19
4	Results of quantitative EEG analysis are associated with autism spectrum disorder and development abnormalities in infants with tuberous sclerosis complex. Biomedical Signal Processing and Control, 2021, 68, 102658.	3.5	7
5	The clinical-phenotype continuum in DYNC1H1-related disorders—genomic profiling and proposal for a novel classification. Journal of Human Genetics, 2020, 65, 1003-1017.	1.1	30
6	ls autism driven by epilepsy in infants with Tuberous Sclerosis Complex?. Annals of Clinical and Translational Neurology, 2020, 7, 1371-1381.	1.7	23
7	Prediction of Neurodevelopment in Infants With Tuberous Sclerosis Complex Using Early EEG Characteristics. Frontiers in Neurology, 2020, 11, 582891.	1.1	19
8	Spectrum of cerebral arteriopathies in children with arterial ischemic stroke. Neurology, 2020, 94, e2479-e2490.	1.5	34
9	TSC2 pathogenic variants are predictive of severe clinical manifestations in TSC infants: results of the EPISTOP study. Genetics in Medicine, 2020, 22, 1489-1497.	1.1	51
10	Early Clinical Predictors of Autism Spectrum Disorder in Infants with Tuberous Sclerosis Complex: Results from the EPISTOP Study. Journal of Clinical Medicine, 2019, 8, 788.	1.0	42
11	A comparison study of anxiety in children undergoing brain MRI vs adults undergoing brain MRI vs children undergoing an electroencephalogram. PLoS ONE, 2019, 14, e0211552.	1.1	12
12	Bi-allelic Mutations in EPRS, Encoding the Glutamyl-Prolyl-Aminoacyl-tRNA Synthetase, Cause a Hypomyelinating Leukodystrophy. American Journal of Human Genetics, 2018, 102, 676-684.	2.6	58
13	Potential Risks to Stable Long-term Outcome of Allogeneic Hematopoietic Stem Cell Transplantation for Children With Cerebral X-linked Adrenoleukodystrophy. JAMA Network Open, 2018, 1, e180769.	2.8	30
14	Lacosamide Lowers Valproate and Levetiracetam Levels. Neuropediatrics, 2017, 48, 188-189.	0.3	6
15	Long-term Outcome of Allogeneic Hematopoietic Stem Cell Transplantation in Patients With Juvenile Metachromatic Leukodystrophy Compared With Nontransplanted Control Patients. JAMA Neurology, 2016, 73, 1133.	4.5	94
16	<i>BRAT1</i> mutations are associated with infantile epileptic encephalopathy, mitochondrial dysfunction, and survival into childhood. American Journal of Medical Genetics, Part A, 2016, 170, 2274-2281.	0.7	25
17	Acute renal failure unmasking Lesch-Nyhan disease in a patient with tuberous sclerosis complex. European Journal of Paediatric Neurology, 2016, 20, 649-651.	0.7	9
18	Acute Disseminated Encephalomyelitis After Human Parechovirus Infection. Pediatric Infectious Disease Journal, 2016, 35, 35-38.	1.1	12

BERNHARD WESCHKE

#	Article	IF	CITATIONS
19	Anti-NMDA receptor encephalitis presenting as atypical anorexia nervosa: an adolescent case report. European Child and Adolescent Psychiatry, 2015, 24, 1321-1324.	2.8	14
20	GLRB is the third major gene of effect in hyperekplexia. Human Molecular Genetics, 2013, 22, 927-940.	1.4	50
21	Recurrent Stroke Due to a Novel Voltage Sensor Mutation in Ca _v 2.1 Responds to Verapamil. Stroke, 2011, 42, e14-7.	1.0	39
22	Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain, 2010, 133, 655-670.	3.7	356
23	Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain, 2010, 133, 1810-1822.	3.7	268
24	Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain, 2008, 131, 747-759.	3.7	134
25	Clinical and Molecular Phenotype of Aicardi-Goutières Syndrome. American Journal of Human Genetics, 2007, 81, 713-725.	2.6	375
26	Oligodendroglial transcription factor (OLIG1 and OLIG2) mutations are not associated with Pelizaeus–Merzbacher-like leukodystrophy. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 365-366.	1.1	2
27	Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection. Nature Genetics, 2006, 38, 910-916.	9.4	592
28	Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nature Medicine, 2006, 12, 307-309.	15.2	476
29	Facial phenotype allows diagnosis of Mowat-Wilson syndrome in the absence of hirschsprung disease. American Journal of Medical Genetics Part A, 2004, 124A, 102-104.	2.4	30
30	Mutations in the Gene Encoding Gap Junction Protein α12 (Connexin 46.6) Cause Pelizaeus-Merzbacher–Like Disease. American Journal of Human Genetics, 2004, 75, 251-260.	2.6	257
31	31Phosphorus Magnetic Resonance Spectroscopy in Late-Onset Tay-Sachs Disease. Journal of Child Neurology, 2001, 16, 377-380.	0.7	13