Tatiana N Borisova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9351481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tandem Cleavage of Hydrogenatedβ- andγ-Carbolinesâ^' New Practical Synthesis of Tetrahydroazocino[4,5-b]indoles and Tetrahydroazocino[5,4-b]indoles Showing Acetylcholinesterase Inhibitory Activity. European Journal of Organic Chemistry, 2004, 2004, 3128-3135.	1.2	62
2	Organic chemistry. History and mutual relations of universities of Russia. Russian Journal of Organic Chemistry, 2017, 53, 1275-1437.	0.3	48
3	A novel synthesis of hexahydroazoninoindoles using activated alkynes in an azepine ring expansion. Tetrahedron, 2006, 62, 12392-12397.	1.0	31
4	The first synthesis and X-ray crystal structure of tetrahydropyrrolo[2,3-d]azocines. Tetrahedron Letters, 2002, 43, 6767-6769.	0.7	30
5	Ester derivatives of annulated tetrahydroazocines: A new class of selective acetylcholinesterase inhibitors. Bioorganic and Medicinal Chemistry, 2006, 14, 7205-7212.	1.4	30
6	Synthesis of Benzoazocines from Substituted Tetrahydroisoquinolines and Activated Alkynes in a Tetrahydropyridine Ring Expansion. European Journal of Organic Chemistry, 2007, 2007, 6106-6117.	1.2	30
7	A new approach towards the synthesis of pyrrolo[2,1-a]isoquinolines. Tetrahedron Letters, 2010, 51, 840-842.	0.7	30
8	A novel multi-component approach to the synthesis of pyrrolo[2,1-a]isoquinoline derivatives. RSC Advances, 2016, 6, 74068-74071.	1.7	24
9	Tetrahydropyridine (THP) ring expansion under the action of activated terminal alkynes. The first synthesis and X-ray crystal structure of tetrahydropyrimido[4,5-d]azocines. Tetrahedron Letters, 2006, 47, 999-1001.	0.7	23
10	Tandem enlargement of the tetrahydropyridine ring in 1-aryl-tetrahydroisoquinolines using activated alkynes—a new and effective synthesis of benzoazocines. Tetrahedron Letters, 2006, 47, 4585-4589.	0.7	21
11	Chapter 2 Synthesis of Heteroannulated Azocine Derivatives. Advances in Heterocyclic Chemistry, 2008, , 81-122.	0.9	21
12	The first example of tetrahydrothieno[3,2-d]azocines synthesis. Tetrahedron, 2008, 64, 10443-10452.	1.0	20
13	Pyrrolo[3,2- c]pyridine derivatives as inhibitors of platelet aggregation. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 581-584.	1.0	19
14	A New Class of 1â€Arylâ€5,6â€dihydropyrrolo[2,1â€ <i>a</i>]isoquinoline Derivatives as Reversers of Pâ€Glycoproteinâ€Mediated Multidrug Resistance in Tumor Cells. ChemMedChem, 2018, 13, 1588-1596.	1.6	19
15	The interaction of 4-hydroxymethyl isoindolines with dehydrobenzene. Synthesis of 3-phenylaminomethyldihydrobenzo[c]furanes. Tetrahedron, 2015, 71, 1175-1181.	1.0	18
16	Domino Reactions of 1-Aroyl-3,4-dihydroisoquinolines with α,β-Unsaturated Aldehydes. Synthesis, 2017, 49, 5251-5257.	1.2	18
17	Tandem transformations of tetrahydrobenzothieno[2,3-c]pyridines in the presence of activated alkynes. Tetrahedron, 2010, 66, 9421-9430.	1.0	17
18	First synthesis of heterocyclic allenes – benzazecine derivatives. New Journal of Chemistry, 2017, 41, 1902-1904.	1.4	17

#	Article	IF	CITATIONS
19	First Efficient One-Pot Synthesis of Tetrahydropyrrolo[2,3-d]azocines and Tetrahydroazocino[4,5-b]indoles. Letters in Organic Chemistry, 2005, 2, 18-20.	0.2	16
20	Synthesis and Reactivity of a Novel Class of Long-Lived Ammonium Ylides: Derivatives of Benzo[b]pyrrolo[2,1-f][1.6]naphthyridine. Journal of Organic Chemistry, 2008, 73, 4596-4601.	1.7	15
21	A facile synthesis of 1-oxo-pyrrolo[2,1-a]isoquinolines. Tetrahedron Letters, 2017, 58, 877-879.	0.7	15
22	Synthesis of pyrrolo[1,2-a][1,6]benzodiazonines from pyrrolo[1,2-a][1,4]benzodiazepines and alkynes containing electron-acceptor substituents. Chemistry of Heterocyclic Compounds, 2013, 49, 1024-1032.	0.6	14
23	Domino reactions of vinyl ethynyl ketones with 1-aryl-3,4-dihydroisoquinolines — Search for selectivity. Molecular Catalysis, 2018, 461, 67-72.	1.0	14
24	Synthesis of novel fluorescent 12a-aryl substituted indoxylisoquinolines via aryne-induced domino process. RSC Advances, 2016, 6, 12642-12646.	1.7	13
25	Heterocyclization of tropinone oximes and 3-methyl-3-azabicyclo[3.3.1.]-nonan-9-one with acetylene in a superbasic medium. Chemistry of Heterocyclic Compounds, 1999, 35, 613-616.	0.6	12
26	Cleavage of some annulated tetrahydropyridines under the action of dimethyl acetylene dicarboxylate in protic solvents. New practical route to substituted pyrroles and indoles. Molecular Diversity, 2000, 6, 207-212.	2.1	12
27	TANDEM MICHAEL ADDITION - HOFFMAN ELIMINATION SEQUENCE OF DMAD ON TETRAHYDROPYRROLO[3,2-C]PYRIDINES. NEW ROUTE TO VINYLPYRROLES Heterocyclic Communications, 2001, 7, .	0.6	12
28	Transformations of tetrahydrobenzo[b][1,6]naphthyridines and tetrahydropyrido[4,3-b]pyrimidines under the action of dimethyl acetylene dicarboxylate. Tetrahedron Letters, 2005, 46, 1975-1979.	0.7	12
29	Reaction of 1-substituted tetrahydro-β-carbolines with activated alkynes-a new original approach to the synthesis of tetrahydroazocino[5,4-b]indoles. Chemistry of Heterocyclic Compounds, 2007, 43, 587-598.	0.6	12
30	Tandem transformations of tetrahydropyrrolo[3,2-c]pyridines under the action of dimethyl acetylenedicarboxylate. A novel route to pyrrolo[2,3-d]azocines. Russian Chemical Bulletin, 2005, 54, 2594-2601.	0.4	11
31	Heterocyclization in the reaction of pyridine-2-selanyl chloride with styrene. Chemistry of Heterocyclic Compounds, 2007, 43, 525-526.	0.6	11
32	Investigation on the antiplatelet activity of pyrrolo[3,2-c]pyridine-containing compounds. Journal of Pharmacy and Pharmacology, 2010, 55, 323-332.	1.2	11
33	A Concise Approach Toward Tetrazolyl-Substituted Benzazocines via a Novel Isocyanide-Based Multicomponent Reaction. Synlett, 2014, 25, 955-958.	1.0	11
34	Transformations of tetrahydro-pyrido[4,3-d]pyrimidines [b]-condensed with isoxazole, thiazole, thiadiazole, and triazole units under the action of activated alkynes. Chemistry of Heterocyclic Compounds, 2008, 44, 1510-1519.	0.6	9
35	The reaction of tetrahydrochromeno[3,4-c]pyridines with activated alkynes. The first synthesis of tetrahydrochromeno[4,3-d]azocines. Tetrahedron Letters, 2011, 52, 4189-4191.	0.7	9
36	Facile Methods for the Synthesis of 8‥lideneâ€1,2,3,8â€ŧetrahydrobenzazecines. European Journal of Organic Chemistry, 2020, 2020, 3041-3049.	1.2	9

#	Article	IF	CITATIONS
37	A novel alkyne-induced recyclization of 4-hydroxymethyl or 4-formyl-1H-2,3-dihydroisoindoles—an effective pathway to substituted isobenzofurans. Tetrahedron Letters, 2009, 50, 4851-4853.	0.7	8
38	A novel synthesis of pyrrolo[1,2-d][1,4]diazocines from tetrahydropyrrolo[1,2-a]pyrazines using activated alkynes in pyrazine ring expansion. Tetrahedron, 2010, 66, 5140-5148.	1.0	8
39	Synthesis of azecino[5,4-b]indoles and indolo[3,2-e][2]benzazonines via tandem transformation of hydrogenated indoloquinolizines and indolizines. Russian Chemical Bulletin, 2012, 61, 1231-1241.	0.4	8
40	Transformations of tetrahydro-1,4-benzoxazepines and tetrahydro-1,4-benzothiazepines under the action of alkynes. First example of the synthesis of tetrahydro-1,4-benzothiazonine-6-carboxylate. Chemistry of Heterocyclic Compounds, 2013, 49, 331-340.	0.6	8
41	Synthesis of 4-amino-substituted tetrahydropyrimido[4,5-d]azocines. Chemistry of Heterocyclic Compounds, 2013, 49, 1180-1187.	0.6	8
42	Synthesis of 2-(chloro(methoxy, morpholino)methyl)-hexahydropyrimidothieno[3,2-c]azocines and tetrahydrospiro[pyrido[4,5']thieno[2,3-d]pyrimidines]. Chemistry of Heterocyclic Compounds, 2015, 51, 17-25.	0.6	8
43	3-benzazecine-based cyclic allene derivatives as highly potent P-glycoprotein inhibitors overcoming doxorubicin multidrug resistance. Future Medicinal Chemistry, 2019, 11, 2095-2106.	1.1	8
44	Away from Flatness: Unprecedented Nitrogen-Bridged Cyclopenta[<i>a</i>]indene Derivatives as Novel Anti-Alzheimer Multitarget Agents. ACS Chemical Neuroscience, 2021, 12, 340-353.	1.7	8
45	First synthesis and x-ray crystal structure of hexahydrobenzo[b]pyrido[3,4,5-de]-1,6-naphthyridines. Journal of Heterocyclic Chemistry, 2005, 42, 1207-1210.	1.4	7
46	Synthesis of hexahydroazonino[5,6-b]indoles from hexahydroazepino[4,3-b]-and-[3,4-b]indoles and activated alkynes. Russian Chemical Bulletin, 2007, 56, 2323-2329.	0.4	7
47	On the reaction of fused benzodiazepines with alkynes containing electron-withdrawing groups. Russian Chemical Bulletin, 2012, 61, 1220-1230.	0.4	7
48	Recyclization of benzofuropyridines by the action of activated alkynes in the synthesis of spiro[benzofuropyridines], representatives of a new class of acetylcholinesterase inhibitors. Chemistry of Heterocyclic Compounds, 2013, 49, 930-940.	0.6	7
49	Synthesis of 6-aryl-Substituted Azocino-[5,4-b]indoles from 1-aryl-Substituted 2-Ethyltetrahydro-β-Carbolines. Chemistry of Heterocyclic Compounds, 2014, 50, 658-669.	0.6	7
50	Homobivalent Lamellarin-Like Schiff Bases: In Vitro Evaluation of Their Cancer Cell Cytotoxicity and Multitargeting Anti-Alzheimer's Disease Potential. Molecules, 2021, 26, 359.	1.7	7
51	Intramolecular cyclization of 5-aryl-3-arylamino-4-benzoyl-1h-3-pyrrolin-2-ones to pyrrolo[3,4-b]quinolines. Chemistry of Heterocyclic Compounds, 2004, 40, 1332-1334.	0.6	6
52	Novel Synthetic Route Toward Benzofuran-pyridine–Based Spirans. Synthetic Communications, 2012, 42, 3337-3343.	1.1	6
53	Transformation of 4-Substituted Tetrahydro-Pyrrolobenzodiazepines in a Three-Component Reaction With Methyl Propiolate and Indole. Chemistry of Heterocyclic Compounds, 2014, 49, 1785-1794.	0.6	6
54	New approaches to the synthesis of benzo[h]pyrroloisoquinoline derivatives. Tetrahedron Letters, 2019, 60, 151264.	0.7	6

#	Article	IF	CITATIONS
55	Synthesis and cytotoxicity of novel 1-arylindolizines and 1-arylpyrrolo[2,1-a]isoquinolines. Tetrahedron Letters, 2021, 87, 153552.	0.7	6
56	Heterocyclization of Oximes of 3,5-Dimethyl(1,3,5-trimethyl)-2,6-diphenylpiperid-4-ones and N-Benzylpyrrolid-3-ones with Acetylene in a Superbasic Medium. Chemistry of Heterocyclic Compounds, 2004, 40, 326-333.	0.6	5
57	Transformations of 4,5,6,7-tetrahydrothieno[3,2-c]-and 1,2,3,4-tetrahydrobenzothieno[2,3-c]pyridines in reactions with alkynes activated by electron-withdrawing substituents. Russian Chemical Bulletin, 2007, 56, 1041-1048.	0.4	5
58	Transformations of tetrahydropyrido[4′,3′:4,5]thieno[2,3-d]pyrimidin-4(3H)-ones in the presence of alkynes bearing electron-withdrawing substituents. Russian Chemical Bulletin, 2012, 61, 370-379.	0.4	5
59	Reactions of tetrahydropyrido[4,5-d][1,2,4]triazolo[1,5-a]-pyrimidin-4-ones with activated alkynes. Synthesis of [1,2,4]triazolo[1′,5′:1,2]pyrimido[4,5-d]azocines. Russian Chemical Bulletin, 2012, 61, 1603-1608.	0.4	5
60	Transformations of 10-Substituted Tetrahydrobenzo[b][1,6]naphthyridines through Interaction with Dehydrobenzene. Chemistry of Heterocyclic Compounds, 2014, 50, 264-270.	0.6	5
61	Unusual Transformations of Cyclic Allenes with an Enamine Moiety into Complex Frameworks. Synlett, 2020, 31, 672-676.	1.0	5
62	A Threeâ€Component Synthesis of 3â€Functionally Substituted 5,6â€Dihydropyrrolo[2,1â€ <i>a</i>]isoquinolines. Chemistry and Biodiversity, 2022, 19, e2100584.	1.0	5
63	Three-component synthesis of 5,6-dihydropyrrolo[2,1-a]isoquinolines from 1-aroyl-3,4-dihydroisoquinolines, electron-deficient alkynes and NH-acids. Tetrahedron Letters, 2022, 103, 153991.	0.7	5
64	Acetylation and trifluoroacetylation reactions of tetrahydropyrrolo[3,2-c]pyridines. Mendeleev Communications, 2002, 12, 162-163.	0.6	4
65	Synthesis and Some Chemical Conversions of 2-([2,2]-5-Paracyclophanyl)pyrrole. Chemistry of Heterocyclic Compounds, 2004, 40, 166-176.	0.6	4
66	Transformations of 2-trifluoroacetyl-4,5,6,7-tetrahydro-1H-pyrrolo[3,2-c]pyridines by the action of ethyl propynoate. A novel synthesis of 2-trifluoroacetyl-4,7,8,9-tetrahydro-1H-pyrrolo[2,3-d]azocines. Russian Journal of Organic Chemistry, 2006, 42, 1851-1855.	0.3	4
67	Tandem cleavage of 2,3,5-trimethyl 7-trifluoroacetyl-1,2,3,4-tetrahydro-pyrrolo[1,2-c]pyrimidine by activated alkynes, caused by Michael addition of a tertiary nitrogen atom to a triple bond. Chemistry of Heterocyclic Compounds, 2007, 43, 913-918.	0.6	4
68	2-Alkyl-4-oxohexahydropyrimido[4,5-d]- and -[5,4-d]azocines. Chemistry of Heterocyclic Compounds, 2011, 47, 222-228.	0.6	4
69	Synthesis of hexahydro[1,4]diazocino[7,8,1-jk]carbazoles and 1-methoxy-9-(β-vinylethylamino)ethylcarbazoles. Chemistry of Heterocyclic Compounds, 2012, 48, 620-624.	0.6	4
70	The First Example of 4,7,8,9-Tetrahydrothieno-[2,3-d]Azocine Synthesis by Domino Reaction of 4-ARYL-4,5,6,7-Tetrahydrothieno[3,2-c]Pyridines with Activated Alkynes. Chemistry of Heterocyclic Compounds, 2014, 50, 1338-1345.	0.6	4
71	Reactions of 3,4-dihydroisoquinolines and dihydrothieno[3,2-c]pyridines with benzyne. Mendeleev Communications, 2017, 27, 506-508.	0.6	4
72	Facile Synthesis and Biological Evaluation of New Thieno[2,3â€g]indolizine Derivatives. ChemistrySelect, 2020, 5, 10821-10826.	0.7	4

#	Article	IF	CITATIONS
73	Synthesis of 8-phenyl substituted 3-benzazecines with allene moiety, their thermal rearrangement and evaluation as acetylcholinesterase inhibitors. Molecular Diversity, 2022, 26, 1243-1247.	2.1	4
74	Study of the stereochemistry of N-H and N-vinyl-4,5,7-trimethyi-4,5,6,7-tetrahydropyrrolo[3,2-c]pyridines and their nitro derivatives by the method of 1H and 13C NMR. Chemistry of Heterocyclic Compounds, 1993, 29, 65-70.	0.6	3
75	Regioselective addition of styrene to 4,5-dihydro-5-methyl-3H-spiro-[2-benzazepine-3,1′-cyclohexane] N-oxide. Chemistry of Heterocyclic Compounds, 2000, 36, 621-622.	0.6	3
76	Novel Approach to Synthesis of Tetrahydrobenzo[b]thieno[3,2-d]azocines. Chemistry of Heterocyclic Compounds, 2005, 41, 944-945.	0.6	3
77	Tandem transformations of 10-substituted tetrahydrobenzo[b][1,6]naphthyridines resulted from the Michael addition of the nitrogen atom of the tetrahydropyridine fragment to the triple bond of activated alkynes. Russian Chemical Bulletin, 2008, 57, 1547-1558.	0.4	3
78	Formation of spiro[benzothieno-3,4'-pyridines] by the reaction of benzothieno[2,3-c]pyridines with acetylene dicarboxylic ester. Chemistry of Heterocyclic Compounds, 2010, 46, 356-357.	0.6	3
79	1,2,3,6-Tetrahydropyrrolo[1,2-d][1,4]diazocines. Reactions of 1-methyl-2-R-tetrahydropyrrolo[1,2-a]pyrazines with alkynes. Russian Chemical Bulletin, 2010, 59, 647-653.	0.4	3
80	First example of a new multicomponent reaction of a tetrahydropyridine ring expansion. Chemistry of Heterocyclic Compounds, 2012, 48, 680-681.	0.6	3
81	Transformations of cotarnine chloride by the action of silver acetylides and alkynes. Chemistry of Heterocyclic Compounds, 2016, 52, 316-321.	0.6	3
82	Reaction of benzyne with 1,2,3,4-tetrahydroisoquinolines as an access to 1 H -3-benzazepines. Mendeleev Communications, 2018, 28, 22-24.	0.6	3
83	Pyrrolo[3,2-c]piperidines. Chemistry of Heterocyclic Compounds, 1987, 23, 799-803.	0.6	2
84	Synthesis and nitration of NH- and N-vinyl-4,5,7-trimethyl-4,5,6,7-tetrahydropyrrolo[3,2-c]pyridines. Chemistry of Heterocyclic Compounds, 1991, 27, 1105-1109.	0.6	2
85	Unusual [3+2]-cycloaddition of acrylic acid derivatives to 7-formyl-4,5,6,7-tetrahydro-4,5,7-trimethylpyrrolo[3,2-c]pyridine under Michael reaction conditions. Chemistry of Heterocyclic Compounds, 1998, 34, 1418-1422.	0.6	2
86	7-Dialkylaminomethyl-2,4,5-trimetyl-and 2,4,5-trimethyl-7-phenylminomethyl-1,2,3,4-tetrahydropyrrolo[1,2-c]pyrimidines. Chemistry of Heterocyclic Compounds, 1999, 35, 1455-1458.	0.6	2
87	Title is missing!. Chemistry of Heterocyclic Compounds, 2001, 37, 1048-1049.	0.6	2
88	Unusual Reaction of 5-Ethyl-4,5,6,7-tetrahydrothieno[3,2-c]pyridine with Ethyl Propiolate. Chemistry of Heterocyclic Compounds, 2004, 40, 519-520.	0.6	2
89	First example of the synthesis of pyrrolo[1,2-d][1,4]diazocine by the reaction of tetrahydropyrrolo[1,2-a]pyrazines with activated alkynes. Chemistry of Heterocyclic Compounds, 2008, 44, 634-636.	0.6	2
90	Interaction of 4-hydroxymethyl- 2-(3,4-dimethoxybenzyl)isoindoline with methyl propiolate. Chemistry of Heterocyclic Compounds, 2009, 45, 372-374.	0.6	2

#	Article	IF	CITATIONS
91	Transformation of 2-ethyl-1-m-fluoro-phenyl-β-carboline by the action of dimethyl acetylenedicarboxylate in the presence of indoles. New method of synthesis of bisindolylarylmethanes. Chemistry of Heterocyclic Compounds, 2010, 46, 1013-1015.	0.6	2
92	The first synthesis of tetrahydrobenzo[b]pyrrolo[2,1-f][1,6]naphthyridine by the Michael addition of butyn-2-one to 1-(2-methoxycarbonylvinyl)tetrahydrobenzo[b][1,6]naphthyridine. Russian Chemical Bulletin, 2010, 59, 1063-1064.	0.4	2
93	Transformations of 4-arylpyrrolo[1,2-a][1,4]benzodiazepines in three-component reactions with activated alkynes and Đ¡Đ; NH, SH, and ОЕacids. Chemistry of Heterocyclic Compounds, 2015, 51, 639-646.	0.6	2
94	Interaction of condensed tetrahydropyrido[4,3-d]pyrimidin-4-ones with dehydrobenzene – synthesis of 6-vinylpyrimidinones fused with five-membered heterocycle containing two or three heteroatoms. Chemistry of Heterocyclic Compounds, 2018, 54, 173-176.	0.6	2
95	Synthesis of 1-(para-methoxyphenyl)tetrazolyl-Substituted 1,2,3,4-Tetrahydroisoquinolines and Their Transformations Involving Activated Alkynes. Molecules, 2018, 23, 3010.	1.7	2
96	Facile synthesis of pyrrolo[2,1-a]isoquinolines by domino reaction of 1-aroyl-3,4-dihydroisoquinolines with conjugated ketones, nitroalkenes and nitriles. Molecular Diversity, 2021, 25, 2441-2446.	2.1	2
97	Formation of tetrahydropyrrolo[1,2-c]pyrimidines from acetylenes and piperidin-4-one oximes. Chemistry of Heterocyclic Compounds, 1987, 23, 1034-1034.	0.6	1
98	Synthesis, structure, and tautomerism of 3a,7-dimethyl-4,6-diphenyl-2-ethynyl-7a-hydroxyperhydropyrrolo[3,2-c]pyridine. Chemistry of Heterocyclic Compounds, 1992, 28, 750-760.	0.6	1
99	Chemical reactions of 4,5,6,7-tetrahydro-4,5,7-trimethylpyrrolo[3,2-c]pyridine and its 2-formyl derivative. Chemistry of Heterocyclic Compounds, 1993, 29, 582-587.	0.6	1
100	Formylation of 1,2,3,4-tetrahydro-2,4,5-trimethylpyrrolo-1-2,c]pyrimidine. Its conversions to the 7-formyl derivative with opening of the tetrahydropyremidine ring. Chemistry of Heterocyclic Compounds, 1995, 31, 468-473.	0.6	1
101	Reaction of 1,2,3,4-tetrahydro-2,4,5-trimethylpyrrolo[1,2-c]pyrimidine and its 7-formyl-substituted derivative with nitric acid. Chemistry of Heterocyclic Compounds, 1999, 35, 195-198.	0.6	1
102	Reaction of 10-Cyanotetrahydrobenzo[b][1,6]naphthyridines with Acetylenedicarboxylic Ester. Chemistry of Heterocyclic Compounds, 2004, 40, 1226-1227.	0.6	1
103	Interaction of 4,5,7-Trimethyl-4,5,6,7-tetrahydropyrrolo[3,2-c]pyridines with Acetic and Trifluoroacetic Anhydrides. Chemistry of Heterocyclic Compounds, 2005, 41, 647-655.	0.6	1
104	Conversion of 2-ethyl-3,3,5,5-tetramethyl- and 2-ethyl-1,3,3,5,5-pentamethyl-1,2,4,5-tetra-hydro-3h-benz-2-azepines by the action of ethyl propiolate. Chemistry of Heterocyclic Compounds, 2009, 45, 1248-1251.	0.6	1
105	The chemistry of the tandem reaction of 1-aryltetrahydrobenzothieno[2,3-c]pyridines with activated alkynes. Chemistry of Heterocyclic Compounds, 2010, 46, 354-355.	0.6	1
106	Reactions of thieno[2,3-Ñ]pyrrolines with dehydrobenzene. Chemistry of Heterocyclic Compounds, 2018, 54, 664-668.	0.6	1
107	Catalytic dehydrocyclization of 3-isopropyl(n-propyl)-2,6-diphenylpyridine and 3-n-propyl-2,4,6-triphenylpyridine. Chemistry of Heterocyclic Compounds, 1984, 20, 519-521.	0.6	0
108	Synthesis and structure of 1-benzoyl-2,5-dimethyl- and 1,2,5-trimethyl-4-arylpiperideins. Chemistry of Heterocyclic Compounds, 1986, 22, 970-976.	0.6	0

#	Article	IF	CITATIONS
109	Mass-spectral investigation of pyrrolo[3,2-c]piperidines. Chemistry of Heterocyclic Compounds, 1988, 24, 176-179.	0.6	0
110	Comparative study of mass-spectrometric behavior of 2,6-diaryl-4-(oxo,oximino,amino)piperidines. Chemistry of Heterocyclic Compounds, 1989, 25, 1259-1266.	0.6	0
111	Formation of perhydropyrrolo[3,2-c]pyridines in the trofimov reaction. Chemistry of Heterocyclic Compounds, 1991, 27, 671-671.	0.6	0
112	Formation of a bis(tetrahydropyrrolo[1,2-c]-7-pyrimidiyl)methane under the conditions of the trofemov reaction and in the reduction of 7-formylpyrrolo[1,2-c]pyrimidine. Chemistry of Heterocyclic Compounds, 1993, 29, 123-124.	0.6	0
113	Electrophilic rearrangement of N-H-tretrahydro-3H-pyrrolo[3,2-c]pyridine to N-methyltetrahydropyrrolo[3,2-c]pyridine under Trofimov reaction conditions. Chemistry of Heterocyclic Compounds, 1995, 31, 123-123.	0.6	0
114	Acetylation and Trifluoroacetylation Reactions of Tetrahydropyrrolo[3,2-c]pyridines ChemInform, 2003, 34, no.	0.1	0
115	Cleavage of Some Annulated Tetrahydropyridines under the Action of Dimethyl Acetylene Dicarboxylate in Protic Solvents. New Practical Route to Substituted Pyrroles and Indoles ChemInform, 2004, 35, no.	0.1	0
116	First Synthesis and X-Ray Crystal Structure of Hexahydrobenzo[b]pyrido[3,4,5-de]-1,6-naphthyridines ChemInform, 2006, 37, no.	0.1	0
117	Reaction of 3,3-dimethyl- and 3-spirocyclohexyl-tetrahydroisoquinolines with alkynes*. Chemistry of Heterocyclic Compounds, 2012, 48, 453-457.	0.6	0