Hai Pham-The

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9351140/publications.pdf Version: 2024-02-01

Ηλι Ρηνω-Της

#	Article	IF	CITATIONS
1	Provisional Classification and <i>in Silico</i> Study of Biopharmaceutical System Based on Caco-2 Cell Permeability and Dose Number. Molecular Pharmaceutics, 2013, 10, 2445-2461.	2.3	78
2	In Silico Prediction of Cacoâ€2 Cell Permeability by a Classification QSAR Approach. Molecular Informatics, 2011, 30, 376-385.	1.4	76
3	QuBiLS-MAS, open source multi-platform software for atom- and bond-based topological (2D) and chiral (2.5D) algebraic molecular descriptors computations. Journal of Cheminformatics, 2017, 9, 35.	2.8	56
4	The Use of Ruleâ€Based and QSPR Approaches in ADME Profiling: A Case Study on Cacoâ€2 Permeability. Molecular Informatics, 2013, 32, 459-479.	1.4	42
5	Computational modeling of human oral bioavailability: what will be next?. Expert Opinion on Drug Discovery, 2018, 13, 509-521.	2.5	39
6	In Silico Assessment of ADME Properties: Advances in Caco-2 Cell Monolayer Permeability Modeling. Current Topics in Medicinal Chemistry, 2019, 18, 2209-2229.	1.0	38
7	Synthesis and biological evaluation of novel quinazoline-triazole hybrid compounds with potential use in Alzheimer's disease. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127404.	1.0	33
8	Design, synthesis and evaluation of novel N -hydroxybenzamides/ N -hydroxypropenamides incorporating quinazolin-4(3 H)-ones as histone deacetylase inhibitors and antitumor agents. Bioorganic Chemistry, 2018, 76, 258-267.	2.0	31
9	Emerging Role of Circulating Tumor Cells in Gastric Cancer. Cancers, 2020, 12, 695.	1.7	30
10	Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database. Chemosphere, 2016, 165, 434-441.	4.2	28
11	A Simple Method to Predict Blood-Brain Barrier Permeability of Drug- Like Compounds Using Classification Trees. Medicinal Chemistry, 2017, 13, 664-669.	0.7	25
12	Novel N -hydroxybenzamides incorporating 2-oxoindoline with unexpected potent histone deacetylase inhibitory effects and antitumor cytotoxicity. Bioorganic Chemistry, 2017, 71, 160-169.	2.0	24
13	Quantitative structure–activity relationship analysis and virtual screening studies for identifying HDAC2 inhibitors from known HDAC bioactive chemical libraries. SAR and QSAR in Environmental Research, 2017, 28, 199-220.	1.0	22
14	QSPR in Oral Bioavailability: Specificity or Integrality?. Mini-Reviews in Medicinal Chemistry, 2012, 12, 534-550.	1.1	20
15	Prioritizing Hits with Appropriate Tradeâ€Offs Between HIVâ€1 Reverse Transcriptase Inhibitory Efficacy and MT4 Blood Cells Toxicity Through Desirabilityâ€Based Multiobjective Optimization and Ranking. Molecular Informatics, 2010, 29, 303-321.	1.4	19
16	Novel 3-substituted-2-oxoindoline-based N-hydroxypropenamides as Histone Deacetylase Inhibitors and Antitumor Agents. Medicinal Chemistry, 2015, 11, 725-735.	0.7	19
17	Quinazolineâ€Based Hydroxamic Acids: Design, Synthesis, and Evaluation of Histone Deacetylase Inhibitory Effects and Cytotoxicity. Chemistry and Biodiversity, 2018, 15, e1800027.	1.0	18
18	Design, synthesis and evaluation of novel hybrids between 4-anilinoquinazolines and substituted triazoles as potent cytotoxic agents. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3741-3747.	1.0	18

ΗΑΙ ΡΗΑΜ-ΤΗΕ

#	Article	IF	CITATIONS
19	Novel 3,4-dihydro-4-oxoquinazoline-based acetohydrazides: Design, synthesis and evaluation of antitumor cytotoxicity and caspase activation activity. Bioorganic Chemistry, 2019, 92, 103202.	2.0	18
20	(<i>E</i>)- <i>N'</i> -Arylidene-2-(4-oxoquinazolin-4(3 <i>H</i>)-yl) acetohydrazides: Synthesis and evaluation of antitumor cytotoxicity and caspase activation activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 465-478.	2.5	18
21	Exploration of certain 1,3-oxazole- and 1,3-thiazole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Bioorganic Chemistry, 2020, 101, 103988.	2.0	18
22	Design, synthesis, and bioevaluation of novel oxoindolin-2-one derivatives incorporating 1-benzyl-1H-1,2,3-triazole. Medicinal Chemistry Research, 2020, 29, 396-408.	1.1	17
23	Integrating theoretical and experimental permeability estimations for provisional biopharmaceutical classification: Application to the WHO essential medicines. Biopharmaceutics and Drug Disposition, 2018, 39, 354-368.	1.1	15
24	A desirability-based multi objective approach for the virtual screening discovery of broad-spectrum anti-gastric cancer agents. PLoS ONE, 2018, 13, e0192176.	1.1	15
25	Machine learning-based models to predict modes of toxic action of phenols to <i>Tetrahymena pyriformis</i> . SAR and QSAR in Environmental Research, 2017, 28, 735-747.	1.0	14
26	A Two QSAR Way for Antidiabetic Agents Targeting Using α-Amylase and α-Glucosidase Inhibitors: Model Parameters Settings in Artificial Intelligence Techniques. Letters in Drug Design and Discovery, 2017, 14, .	0.4	13
27	Quinazolinâ€4(3 <i>H</i>)â€oneâ€Based Hydroxamic Acids: Design, Synthesis and Evaluation of Histone Deacetylase Inhibitory Effects and Cytotoxicity. Chemistry and Biodiversity, 2019, 16, e1800502.	1.0	12
28	Design, synthesis and evaluation of novel indirubin-based N-hydroxybenzamides, N-hydroxypropenamides and N-hydroxyheptanamides as histone deacetylase inhibitors and antitumor agents. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127537.	1.0	12
29	Computational Identification of Chemical Compounds with Potential Activity against Leishmania amazonensis using Nonlinear Machine Learning Techniques. Current Topics in Medicinal Chemistry, 2019, 18, 2347-2354.	1.0	12
30	Exploring different strategies for imbalanced ADME data problem: case study on Caco-2 permeability modeling. Molecular Diversity, 2016, 20, 93-109.	2.1	11
31	Exploration of some indole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Chemical Papers, 2017, 71, 1759-1769.	1.0	11
32	Beyond model interpretability using <scp>LDA</scp> and decision trees for αâ€amylase and αâ€glucosidase inhibitor classification studies. Chemical Biology and Drug Design, 2019, 94, 1414-1421.	1.5	11
33	Novel hydroxamic acids incorporating 1-((1H-1,2,3-Triazol-4-yl)methyl)-3-hydroxyimino-indolin-2-ones: synthesis, biological evaluation, and SAR analysis. Journal of Chemical Sciences, 2018, 130, 1.	0.7	9
34	Novel 4-Oxoquinazoline-Based <i>N</i> -Hydroxypropenamides as Histone Deacetylase Inhibitors: Design, Synthesis, and Biological Evaluation. ACS Omega, 2021, 6, 4907-4920.	1.6	9
35	Novel Hydroxamic Acids Incorporating 1-((1H-1,2,3-Triazol-4-yl)methyl)- 3-substituted-2-oxoindolines: Synthesis, Biological Evaluation and SAR Analysis. Medicinal Chemistry, 2018, 14, 831-850.	0.7	9
36	Essential oils of <i>Uvaria boniana</i> – chemical composition, <i>in vitro</i> bioactivity, docking, and <i>in silico</i> ADMET profiling of selective major compounds. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2022, 77, 207-218.	0.6	9

Наі Рнам-Тне

#	Article	IF	CITATIONS
37	<i>N</i> ′â€{(<i>E</i>)â€Arylidene]â€2â€(2,3â€dihydroâ€3â€oxoâ€4 <i>H</i> â€1,4â€benzoxazinâ€4â€yl)â€ac and Evaluation of Caspase Activation Activity and Cytotoxicity. Chemistry and Biodiversity, 2018, 15, e1800322.	etohydraz 1.0	zides: Synthe 7
38	Novel Conjugated Quinazolinone-Based Hydroxamic Acids: Design, Synthesis and Biological Evaluation. Medicinal Chemistry, 2021, 17, 732-749.	0.7	6
39	INTEGRATING STRUCTURE AND LIGAND-BASED APPROACHES FOR MODELLING THE HISTONE DEACETYLASE INHIBITION ACTIVITY OF HYDROXAMIC ACID DERIVATIVES. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 198.	0.3	5
40	Learning from Multiple Classifier Systems: Perspectives for Improving Decision Making of QSAR Models in Medicinal Chemistry. Current Topics in Medicinal Chemistry, 2018, 17, 3269-3288.	1.0	5
41	New Acetohydrazides Incorporating 2â€Oxoindoline and 4â€Oxoquinazoline: Synthesis and Evaluation of Cytotoxicity and Caspase Activation Activity. Chemistry and Biodiversity, 2020, 17, e1900670.	1.0	4
42	Design, Synthesis and Bioevaluation of Two Series of 3â€{(1â€Benzyl″ H) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 and Biodiversity, 2020, 17, e2000290.	547 Td (â 1.0	ì€1,2,3â€tria 4
43	Design, synthesis, and evaluation of novel (E)―N 'â€(3â€allylâ€2â€hydroxy)benzylideneâ€2â€(4â€oxoquinazolir	â€ 3 (4 H) 2.1	Tj ₄ ETQq11(
44	Exploration of Some Thiazolidine-2,4-dione and 2-Oxoindoline Derivatives Incorporating 3,4,5-Trimethoxybenzyl Moiety as Novel Anticancer Agents. Letters in Drug Design and Discovery, 2018, 15, 375-387.	0.4	4
45	Ligand-based discovery of new potential acetylcholinesterase inhibitors for Alzheimer's disease treatment. SAR and QSAR in Environmental Research, 2022, 33, 49-61.	1.0	4
46	Radicular cyst in a primary molar following pulp therapy with gutta percha: A case report and literature review. Journal of Clinical and Experimental Dentistry, 2019, 11, 0-0.	0.5	3
47	Machine Learning Applications in Nanomedicine and Nanotoxicology. International Journal of Applied Nanotechnology Research, 2019, 4, 1-7.	1.1	3
48	Computational identification of chemical compounds with potential anti-Chagas activity using a classification tree. SAR and QSAR in Environmental Research, 2021, 32, 71-83.	1.0	3
49	A Review of Computational Approaches Targeting SARS-CoV-2 Main Protease to the Discovery of New Potential Antiviral Compounds. Current Topics in Medicinal Chemistry, 2023, 23, 3-16.	1.0	3
50	<i>Dry</i> selection and <i>wet</i> evaluation for the <i>rational</i> discovery of new anthelmintics. Molecular Physics, 2017, 115, 2300-2313.	0.8	2
51	Higher-Order and Mixed Discrete Derivatives such as a Novel Graph- Theoretical Invariant for Generating New Molecular Descriptors. Current Topics in Medicinal Chemistry, 2019, 19, 944-956.	1.0	2
52	Atom based linear index descriptors in QSAR-machine learning classifiers for the prediction of ubiquitin-proteasome pathway activity. Medicinal Chemistry Research, 2018, 27, 695-704.	1.1	1
53	Multi-Criteria Decision Making: the Best Choice for the Modeling of Chemicals against Hyper-Pigmentation?. Current Bioinformatics, 2015, 10, 520-532.	0.7	1
54	Design, Synthesis and Evaluation of Novel 3/4-((Substituted benzamidophenoxy)) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 67 1 0.9	۲d (methyl)-۱ 1

#	Article	IF	CITATIONS
55	Design, synthesis, and evaluation of novel N'-substituted-1-(4-chlorobenzyl)-1H-indol-3-carbohydrazides as antitumor agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1854-1865.	2.5	1
56	Machine Learning Applications in Nanomedicine and Nanotoxicology. , 2022, , 38-45.		1
57	Design, Synthesis and Evaluation of Novel (E)-N'-((1-(4-chlorobenzyl)-1H-indol-3-yl)methylene)-2-(4-oxoquinazolin-3(4H)-yl)acetohydrazides as Antitumor Agents. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, .	0.9	0