Adam J Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9351089/publications.pdf

Version: 2024-02-01

65 papers	2,051 citations	24 h-index	254170 43 g-index
65	65	65	3145
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Imaging Atherosclerosis. Circulation Research, 2016, 118, 750-769.	4.5	215
2	Role of biomechanical forces in the natural history of coronary atherosclerosis. Nature Reviews Cardiology, 2016, 13, 210-220.	13.7	193
3	High wall shear stress and high-risk plaque: an emerging concept. International Journal of Cardiovascular Imaging, 2017, 33, 1089-1099.	1.5	96
4	Smart watches for heart rate assessment in atrial arrhythmias. International Journal of Cardiology, 2018, 266, 124-127.	1.7	96
5	Material properties of components in human carotid atherosclerotic plaques: A uniaxial extension study. Acta Biomaterialia, 2014, 10, 5055-5063.	8.3	81
6	Coronary Plaque Structural Stress Is Associated With Plaque Composition and Subtype and Higher in Acute Coronary Syndrome. Circulation: Cardiovascular Imaging, 2014, 7, 461-470.	2.6	78
7	Direct Comparison of Virtual-Histology Intravascular Ultrasound and Optical Coherence Tomography Imaging for Identification of Thin-Cap Fibroatheroma. Circulation: Cardiovascular Imaging, 2015, 8, e003487.	2.6	78
8	Plaque Rupture in Coronary Atherosclerosis Is Associated With Increased Plaque Structural Stress. JACC: Cardiovascular Imaging, 2017, 10, 1472-1483.	5 . 3	69
9	Impact of combined plaque structural stress and wall shear stress on coronary plaque progression, regression, and changes in composition. European Heart Journal, 2019, 40, 1411-1422.	2.2	68
10	Plaque hemorrhage in carotid artery disease: Pathogenesis, clinical and biomechanical considerations. Journal of Biomechanics, 2014, 47, 847-858.	2.1	61
11	Percutaneous Coronary Intervention Using Drug-Eluting Stents Versus Coronary Artery Bypass Grafting for Unprotected Left Main Coronary Artery Stenosis. Circulation: Cardiovascular Interventions, 2016, 9, .	3.9	61
12	An assessment on the incremental value of high-resolution magnetic resonance imaging to identify culprit plaques in atherosclerotic disease of the middle cerebral artery. European Radiology, 2016, 26, 2206-2214.	4. 5	61
13	Plaque Structural Stress Estimations Improve Prediction of Future Major Adverse Cardiovascular Events After Intracoronary Imaging. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	55
14	Association of Volumetric Epicardial Adipose Tissue Quantification and Cardiac Structure and Function. Journal of the American Heart Association, 2018, 7, e009975.	3.7	55
15	Expansion and malapposition characteristics after bioresorbable vascular scaffold implantation. Catheterization and Cardiovascular Interventions, 2014, 84, 37-45.	1.7	52
16	Coronary CT angiography features of ruptured and high-risk atherosclerotic plaques: Correlation with intra-vascular ultrasound. Journal of Cardiovascular Computed Tomography, 2017, 11, 455-461.	1.3	48
17	Intravascular ultrasound guidance improves clinical outcomes during implantation of both first- and second-generation drug-eluting stents: a meta-analysis. EuroIntervention, 2017, 12, 1632-1642.	3. 2	47
18	Pathophysiological coronary and microcirculatory flow alterations in aortic stenosis. Nature Reviews Cardiology, 2018, 15, 420-431.	13.7	41

#	Article	IF	Citations
19	Heterogeneity of Plaque Structural Stress Is Increased in Plaques Leading to MACE. JACC: Cardiovascular Imaging, 2020, 13, 1206-1218.	5.3	40
20	Layer- and Direction-Specific Material Properties, Extreme Extensibility and Ultimate Material Strength of Human Abdominal Aorta and Aneurysm: A Uniaxial Extension Study. Annals of Biomedical Engineering, 2015, 43, 2745-2759.	2.5	38
21	Serial assessment of the index of microcirculatory resistance during primary percutaneous coronary intervention comparing manual aspiration catheter thrombectomy with balloon angioplasty (IMPACT) Tj ETQq1	1 02784314	4 r gB T /Over
22	Feasibility and Validity of Computed Tomography-Derived Fractional Flow Reserve in Patients With Severe Aortic Stenosis. Circulation: Cardiovascular Interventions, 2021, 14, e009586.	3.9	30
23	The influence of constitutive law choice used to characterise atherosclerotic tissue material properties on computing stress values in human carotid plaques. Journal of Biomechanics, 2015, 48, 3912-3921.	2.1	29
24	Novel bioabsorbable polymer and polymer-free metallic drug-eluting stents. Journal of Cardiology, 2018, 71, 435-443.	1.9	29
25	Intravascular ultrasound and optical coherence tomography imaging of coronary atherosclerosis. International Journal of Cardiovascular Imaging, 2016, 32, 189-200.	1.5	26
26	Geographical miss is associated with vulnerable plaque and increased major adverse cardiovascular events in patients with myocardial infarction. Catheterization and Cardiovascular Interventions, 2016, 88, 340-347.	1.7	25
27	Direct stenting is an independent predictor of improved survival in patients undergoing primary percutaneous coronary intervention for ST elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2014, 3, 340-346.	1.0	22
28	A uni-extension study on the ultimate material strength and extreme extensibility of atherosclerotic tissue in human carotid plaques. Journal of Biomechanics, 2015, 48, 3859-3867.	2.1	22
29	Impact of Fiber Structure on the Material Stability and Rupture Mechanisms of Coronary Atherosclerotic Plaques. Annals of Biomedical Engineering, 2017, 45, 1462-1474.	2.5	21
30	Influence of material property variability on the mechanical behaviour of carotid atherosclerotic plaques: A 3D fluidâ€structure interaction analysis. International Journal for Numerical Methods in Biomedical Engineering, 2015, 31, e02722.	2.1	18
31	Utility of photoplethysmography for heart rate estimation among inpatients. Internal Medicine Journal, 2018, 48, 587-591.	0.8	18
32	Initial SYNTAX Score Predicts Major Adverse Cardiac Events After Primary Percutaneous Coronary Intervention. Angiology, 2014, 65, 408-412.	1.8	17
33	A Practical Guide for Fractional Flow Reserve Guided Revascularisation. Heart Lung and Circulation, 2018, 27, 406-419.	0.4	17
34	Association of Wall Shear Stress with Coronary Plaque Progression and Transformation. Interventional Cardiology Clinics, 2015, 4, 491-502.	0.4	16
35	Glucagon-like peptide-1 derived cardioprotection does not utilize a KATP-channel dependent pathway: mechanistic insights from human supply and demand ischemia studies. Cardiovascular Diabetology, 2016, 15, 99.	6.8	15
36	Anatomical plaque and vessel characteristics are associated with hemodynamic indices including fractional flow reserve and coronary flow reserve: A prospective exploratory intravascular ultrasound analysis. International Journal of Cardiology, 2017, 248, 92-96.	1.7	14

#	Article	IF	Citations
37	The assessment of intermediate coronary lesions using intracoronary imaging. Cardiovascular Diagnosis and Therapy, 2020, 10, 1445-1460.	1.7	13
38	Polymerâ€free versus permanent polymerâ€coated drug eluting stents for the treatment of coronary artery disease: A metaâ€analysis of randomized trials. Journal of Interventional Cardiology, 2018, 31, 608-616.	1.2	12
39	Implantation of bioresorbable vascular scaffolds following acute coronary syndrome is associated with reduced early neointimal growth and strut coverage. EuroIntervention, 2016, 12, 724-733.	3.2	12
40	Off- vs. On-Pump Coronary Artery Bypass Grafting Long-Term Survival is Driven by Incompleteness of Revascularisation. Heart Lung and Circulation, 2020, 29, 149-155.	0.4	11
41	Left bundle branch block with acute thrombotic occlusion is associated with increased myocardial jeopardy score and poor clinical outcomes in primary percutaneous coronary intervention activations. Heart, 2013, 99, 774-778.	2.9	9
42	Application of the DILEMMA score to improve lesion selection for invasive physiological assessment. Catheterization and Cardiovascular Interventions, 2019, 94, E96-E103.	1.7	9
43	Diabetes mellitus is independently associated with early stent thrombosis in patients undergoing drug eluting stent implantation: Analysis from the Victorian cardiac outcomes registry. Catheterization and Cardiovascular Interventions, 2022, 99, 554-562.	1.7	9
44	Cholesterol crystals identified using optical coherence tomography and virtual histology intravascular ultrasound. EuroIntervention, 2015, 11, e1-e1.	3.2	9
45	Mid-term clinical outcomes of ABSORB bioresorbable vascular scaffold implantation in a real-world population: A single-center experience. Cardiovascular Revascularization Medicine, 2015, 16, 461-464.	0.8	8
46	Optical coherence tomography imaging of coronary atherosclerosis is affected by intraobserver and interobserver variability. Journal of Cardiovascular Medicine, 2016, 17, 368-373.	1.5	8
47	Optical Coherence Tomography Guided Percutaneous Coronary Intervention. Heart Lung and Circulation, 2017, 26, 1267-1276.	0.4	8
48	Biodegradable-Polymer Versus Polymer-Free Drug-Eluting Stents for the Treatment of Coronary Artery Disease. Cardiovascular Revascularization Medicine, 2019, 20, 865-870.	0.8	8
49	Coregistered Intravascular Ultrasound and Optical Coherence Tomography Imaging During Implantation of a Bioresorbable Vascular Scaffold. JACC: Cardiovascular Interventions, 2013, 6, e41-e42.	2.9	7
50	Intravascular ultrasound of the proximal left anterior descending artery is sufficient to detect early cardiac allograft vasculopathy. Clinical Transplantation, 2018, 32, e13167.	1.6	7
51	Adenosineâ€Induced Coronary Steal Is Observed in Patients Presenting With STâ€Segment–Elevation Myocardial Infarction. Journal of the American Heart Association, 2021, 10, e019899.	3.7	7
52	Compounding Local Invariant Features and Global Deformable Geometry for Medical Image Registration. PLoS ONE, 2014, 9, e105815.	2.5	5
53	Contemporary invasive imaging modalities that identify and risk-stratify coronary plaques at risk of rupture. Expert Review of Cardiovascular Therapy, 2015, 13, 9-13.	1.5	5
54	The Role of Fractional Flow Reserve and Instantaneous Wave-Free Ratio Measurements in Patients with Acute Coronary Syndrome. Current Cardiology Reports, 2019, 21, 159.	2.9	5

#	Article	IF	CITATIONS
55	Agreement Between iFR and Other Non-Hyperaemic Pressure Ratios in Severe Aortic Stenosis. Cardiovascular Revascularization Medicine, 2022, 41, 47-52.	0.8	4
56	From Ultrasonography to High Resolution Magnetic Resonance Imaging: Towards an Optimal Management Strategy for Vulnerable Carotid Atherosclerotic Plaques. EBioMedicine, 2016, 3, 2-3.	6.1	3
57	Coronary imaging of cardiac allograft vasculopathy predicts current and future deterioration of left ventricular function in patients with orthotopic heart transplantation. Clinical Transplantation, 2022, 36, e14523.	1.6	3
58	Early disarticulation of a bioresorbable vascular scaffold: an underreported consequence of repeat imaging. Cardiovascular Intervention and Therapeutics, 2018, 33, 175-177.	2.3	2
59	Adaptations to Coronary Physiology in a Patient With Severe Aortic Stenosis and Complete Heart Block Undergoing Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Interventions, 2019, 12, 687-689.	2.9	2
60	From Radial Artery to Embolus. JACC: Cardiovascular Interventions, 2015, 8, e177-e178.	2.9	1
61	76â€Radial Access for Percutaneous Coronary Intervention - Does Access Site Choice Translate Into Clinical Benefit?. Heart, 2014, 100, A44.2-A44.	2.9	O
62	113â€Neointimal Coverage of Bioresorbable Vascular Scaffolds within Four Months – Can we Stop Dual Antiplatelets Early?. Heart, 2015, 101, A65.1-A65.	2.9	0
63	The Promise of Vascular Restoration IsÂStillÂAlive. Journal of the American College of Cardiology, 2017, 70, 75-77.	2.8	O
64	Fractional Flow Reserve following Percutaneous Coronary Intervention. Journal of Interventional Cardiology, 2020, 2020, 1-12.	1.2	0
65	123â€Coronary imaging of cardiac allograft vasculopathy predicts current and future deterioration of left ventricular dysfunction in patients with orthotopic heart transplantation. , 2021, , .		O