Zhihui Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9350968/publications.pdf Version: 2024-02-01

7нініц Снао

#	Article	IF	CITATIONS
1	Enantioselective [3 + 2] Cycloaddition of Vinylcyclopropanes with Alkenyl <i>N</i> -Heteroarenes Enabled by Palladium Catalysis. Organic Letters, 2022, 24, 3965-3969.	2.4	7
2	Construction of Axially Chiral Indoles by Cycloaddition–Isomerization via Atroposelective Phosphoric Acid and Silver Sequential Catalysis. ACS Catalysis, 2022, 12, 8094-8103.	5.5	30
3	Palladium-Catalyzed Intermolecular Asymmetric Dearomative Annulation of Phenols with Vinyl Cyclopropanes. Organic Letters, 2022, 24, 4865-4870.	2.4	9
4	Palladium-Catalyzed Asymmetric Direct Intermolecular Allylation of α-Aryl Cyclic Vinylogous Esters: Divergent Synthesis of (+)-Oxomaritidine and (â~')-Mesembrine. Organic Letters, 2021, 23, 920-924.	2.4	12
5	Desymmetrization of 1,3-Diones by Catalytic Enantioselective Condensation with Hydrazine. Journal of the American Chemical Society, 2021, 143, 4179-4186.	6.6	39
6	Enantiodivergent synthesis of tricyclic chromans: Remote nucleophilic groups switch selectivity in catalytic asymmetric cascade reactions of trifunctional substrates. Green Synthesis and Catalysis, 2021, 2, 241-245.	3.7	13
7	Transition-Metal-Catalyzed Asymmetric Couplings of α-Aminoalkyl Fragments to Access Chiral Alkylamines. ACS Catalysis, 2021, 11, 6560-6577.	5.5	25
8	Direct access to spirocycles by Pd/WingPhos-catalyzed enantioselective cycloaddition of 1,3-enynes. Nature Communications, 2021, 12, 5667.	5.8	30
9	Dual C(sp3)–H Functionalization of Cyclic Ethers via Singlet Oxygen-Mediated Ring Opening and Ring Closing. Organic Letters, 2021, 23, 8267-8272.	2.4	6
10	Catalytic asymmetric 1,4-type Friedel–Crafts (hetero)arylations of 1-azadienes: the highly enantioselective syntheses of chiral hetero-triarylmethanes. Organic Chemistry Frontiers, 2020, 7, 609-616.	2.3	23
11	Palladiumâ€Catalyzed Asymmetric [4+3]â€Cyclization Reaction of Fused 1â€Azadienes with Aminoâ€trimethylenemethanes: Highly Stereoselective Construction of Chiral Fused Azepines. Chinese Journal of Chemistry, 2020, 38, 151-157.	2.6	42
12	Stereoselective access to [5.5.0] and [4.4.1] bicyclic compounds through Pd-catalysed divergent higher-order cycloadditions. Nature Chemistry, 2020, 12, 860-868.	6.6	79
13	Catalytic Asymmetric [4 + 2] Cycloaddition of <i>ortho</i> -Alkenyl Naphthols/Phenols with <i>ortho</i> -Quinone Methides: Highly Stereoselective Synthesis of Chiral 2,3,4-Trisubstituted Chromans. Journal of Organic Chemistry, 2020, 85, 5231-5244.	1.7	28
14	Direct asymmetric N-propargylation of indoles and carbazoles catalyzed by lithium SPINOL phosphate. Nature Communications, 2020, 11, 226.	5.8	30
15	Highly Regioselective Synthesis of Multisubstituted Pyrroles via Ag-Catalyzed [4+1C] ^{insert} Cascade. ACS Catalysis, 2020, 10, 3733-3740.	5.5	49
16	Enantioselective synthesis of chiral α-alkynylated thiazolidones by tandem S-addition/acetalization of alkynyl imines. Organic and Biomolecular Chemistry, 2020, 18, 3117-3124.	1.5	8
17	Catalytic Asymmetric and Divergent Synthesis of Tricyclic and Tetracyclic Spirooxindoles: Controllable Site-Selective Electrophilic Halocyclization of 1,6-Enynes. Organic Letters, 2019, 21, 6068-6073.	2.4	19
18	Rhodium(I)/Zn(OTf) ₂ â€Catalyzed Asymmetric Ring Opening/Cyclopropanation of Oxabenzonorbornadienes with Phosphorus Ylides. Angewandte Chemie - International Edition, 2019, 58, 15819-15823.	7.2	21

ZHIHUI SHAO

#	Article	IF	CITATIONS
19	Rhodium(I)/Zn(OTf) 2 â€Catalyzed Asymmetric Ring Opening/Cyclopropanation of Oxabenzonorbornadienes with Phosphorus Ylides. Angewandte Chemie, 2019, 131, 15966-15970.	1.6	5
20	Enantiodivergence by minimal modification of an acyclic chiral secondary aminocatalyst. Nature Communications, 2019, 10, 5182.	5.8	35
21	Regioselectivity Switch in Palladium atalyzed Allenylic Cycloadditions of Allenic Esters: [4+1] or [4+3] Cycloaddition/Cross oupling. Angewandte Chemie - International Edition, 2019, 58, 4710-4713.	7.2	26
22	Regioselectivity Switch in Palladium atalyzed Allenylic Cycloadditions of Allenic Esters: [4+1] or [4+3] Cycloaddition/Cross oupling. Angewandte Chemie, 2019, 131, 4758-4761.	1.6	7
23	Rh(II)/BrÃ,nsted Acid Catalyzed General and Highly Diastereo- and Enantioselective Propargylation of in Situ Generated Oxonium Ylides and C-Alkynyl N-Boc N,O-Acetals: Synthesis of Polyfunctional Propargylamines. Organic Letters, 2019, 21, 1292-1296.	2.4	35
24	Organocatalyzed Intermolecular Asymmetric Allylic Dearomatization of Both α- and β-Naphthols. Organic Letters, 2019, 21, 330-334.	2.4	49
25	An Update of N-Tosylhydrazones: Versatile Reagents for Metal-Catalyzed and Metal-Free Coupling Reactions. Synthesis, 2018, 50, 2281-2306.	1.2	51
26	Dearomatization of naphthols using oxy-allyl cations: efficient construction of α-all-carbon quaternary center-containing 2-(2-oxocycloalkyl)cycloalkyl diketones. Organic Chemistry Frontiers, 2018, 5, 2794-2798.	2.3	18
27	Enantioselective Conjugate Additions of "Difficult―Ketones to Nitrodienynes and Tandem Annulations. Advanced Synthesis and Catalysis, 2017, 359, 89-95.	2.1	8
28	Chiral Primary Amine Catalysis for Asymmetric Mannich Reactions of Aldehydes with Ketimines: Stereoselectivity and Reactivity. Angewandte Chemie - International Edition, 2017, 56, 12697-12701.	7.2	67
29	A Multifaceted Directing Group Switching Ynones as Michael Donors in Chemo-, Enantio-, and γ-Selective 1,4-Conjugate Additions with Nitroolefins. Journal of Organic Chemistry, 2016, 81, 8296-8305.	1.7	10
30	Mild and Selective Cobalt atalyzed Chemodivergent Transfer Hydrogenation of Nitriles. Angewandte Chemie, 2016, 128, 14873-14877.	1.6	31
31	An Arylation Strategy to Propargylamines: Catalytic Asymmetric Friedel–Craftsâ€type Arylation Reactions of Câ€Alkynyl Imines. Angewandte Chemie - International Edition, 2016, 55, 15142-15146.	7.2	60
32	Catalytic Asymmetric Construction of Vicinal Tetrasubstituted Stereocenters by the Mannich Reaction of Linear α-Substituted Monothiomalonates with Isatin N-Boc Ketimines. Journal of Organic Chemistry, 2015, 80, 4950-4956.	1.7	47
33	Asymmetric synthesis of syn-propargylamines and unsaturated β-amino acids under BrÃ,nsted base catalysis. Nature Communications, 2015, 6, 8544.	5.8	65
34	Combining transition metal catalysis and organocatalysis – an update. Chemical Society Reviews, 2013, 42, 1337-1378.	18.7	632
35	Enantioselective Palladium atalyzed Decarboxylative Allylation of Carbazolones: Total Synthesis of (â^')â€Aspidospermidine and (+)â€Kopsihainanineâ€A. Angewandte Chemie - International Edition, 2013, 52, 4117-4121.	7.2	122
36	N-Tosylhydrazones: versatile reagents for metal-catalyzed and metal-free cross-coupling reactions. Chemical Society Reviews, 2012, 41, 560-572.	18.7	558

ZHIHUI SHAO

#	Article	IF	CITATIONS
37	Mutually Complementary Metal―and Organocatalysis with Collective Synthesis: Asymmetric Conjugate Addition of 1,3â€Carbonyl Compounds to Nitroenynes and Further Reactions of the Products. Advanced Synthesis and Catalysis, 2012, 354, 2873-2885.	2.1	30
38	Metalâ€Mediated Oxidative Crossâ€Coupling of Terminal Alkynes: A Promising Strategy for Alkyne Synthesis. Angewandte Chemie - International Edition, 2010, 49, 9566-9568.	7.2	51
39	Asymmetric Conjugate Addition of Acetylacetone to Nitroolefins with Chiral Organocatalysts Derived from Both I±â€Amino ÂAcids and Carbohydrates. European Journal of Organic Chemistry, 2009, 2009, 4622-4626.	1.2	39
40	Combining transition metal catalysis and organocatalysis: a broad new concept for catalysis. Chemical Society Reviews, 2009, 38, 2745.	18.7	745