Zhihui Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9350968/publications.pdf

Version: 2024-02-01

40 3,202 25 41 papers citations h-index g-index

41 41 2715
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Combining transition metal catalysis and organocatalysis: a broad new concept for catalysis. Chemical Society Reviews, 2009, 38, 2745.	18.7	745
2	Combining transition metal catalysis and organocatalysis – an update. Chemical Society Reviews, 2013, 42, 1337-1378.	18.7	632
3	N-Tosylhydrazones: versatile reagents for metal-catalyzed and metal-free cross-coupling reactions. Chemical Society Reviews, 2012, 41, 560-572.	18.7	558
4	Enantioselective Palladium atalyzed Decarboxylative Allylation of Carbazolones: Total Synthesis of (â^')â€Aspidospermidine and (+)â€Kopsihainanineâ€A. Angewandte Chemie - International Edition, 2013, 52, 4117-4121.	7.2	122
5	Stereoselective access to [5.5.0] and [4.4.1] bicyclic compounds through Pd-catalysed divergent higher-order cycloadditions. Nature Chemistry, 2020, 12, 860-868.	6.6	79
6	Chiral Primary Amine Catalysis for Asymmetric Mannich Reactions of Aldehydes with Ketimines: Stereoselectivity and Reactivity. Angewandte Chemie - International Edition, 2017, 56, 12697-12701.	7.2	67
7	Asymmetric synthesis of syn-propargylamines and unsaturated \hat{l}^2 -amino acids under Br \tilde{A}_j nsted base catalysis. Nature Communications, 2015, 6, 8544.	5.8	65
8	An Arylation Strategy to Propargylamines: Catalytic Asymmetric Friedel–Craftsâ€type Arylation Reactions of Câ€Alkynyl Imines. Angewandte Chemie - International Edition, 2016, 55, 15142-15146.	7.2	60
9	Metalâ€Mediated Oxidative Crossâ€Coupling of Terminal Alkynes: A Promising Strategy for Alkyne Synthesis. Angewandte Chemie - International Edition, 2010, 49, 9566-9568.	7.2	51
10	An Update of N-Tosylhydrazones: Versatile Reagents for Metal-Catalyzed and Metal-Free Coupling Reactions. Synthesis, 2018, 50, 2281-2306.	1.2	51
11	Organocatalyzed Intermolecular Asymmetric Allylic Dearomatization of Both α- and β-Naphthols. Organic Letters, 2019, 21, 330-334.	2.4	49
12	Highly Regioselective Synthesis of Multisubstituted Pyrroles via Ag-Catalyzed [4+1C] ^{insert} Cascade. ACS Catalysis, 2020, 10, 3733-3740.	5.5	49
13	Catalytic Asymmetric Construction of Vicinal Tetrasubstituted Stereocenters by the Mannich Reaction of Linear α-Substituted Monothiomalonates with Isatin N-Boc Ketimines. Journal of Organic Chemistry, 2015, 80, 4950-4956.	1.7	47
14	Palladiumâ€Catalyzed Asymmetric [4+3]â€Cyclization Reaction of Fused 1â€Azadienes with Aminoâ€trimethylenemethanes: Highly Stereoselective Construction of Chiral Fused Azepines. Chinese Journal of Chemistry, 2020, 38, 151-157.	2.6	42
15	Asymmetric Conjugate Addition of Acetylacetone to Nitroolefins with Chiral Organocatalysts Derived from Both αâ€Amino ÂAcids and Carbohydrates. European Journal of Organic Chemistry, 2009, 2009, 4622-4626.	1.2	39
16	Desymmetrization of 1,3-Diones by Catalytic Enantioselective Condensation with Hydrazine. Journal of the American Chemical Society, 2021, 143, 4179-4186.	6.6	39
17	Enantiodivergence by minimal modification of an acyclic chiral secondary aminocatalyst. Nature Communications, 2019, 10, 5182.	5.8	35
18	Rh(II)/BrÃ,nsted Acid Catalyzed General and Highly Diastereo- and Enantioselective Propargylation of in Situ Generated Oxonium Ylides and C-Alkynyl N-Boc N,O-Acetals: Synthesis of Polyfunctional Propargylamines. Organic Letters, 2019, 21, 1292-1296.	2.4	35

#	Article	IF	CITATIONS
19	Mild and Selective Cobaltâ€Catalyzed Chemodivergent Transfer Hydrogenation of Nitriles. Angewandte Chemie, 2016, 128, 14873-14877.	1.6	31
20	Mutually Complementary Metal―and Organocatalysis with Collective Synthesis: Asymmetric Conjugate Addition of 1,3â€Carbonyl Compounds to Nitroenynes and Further Reactions of the Products. Advanced Synthesis and Catalysis, 2012, 354, 2873-2885.	2.1	30
21	Direct asymmetric N-propargylation of indoles and carbazoles catalyzed by lithium SPINOL phosphate. Nature Communications, 2020, 11 , 226.	5.8	30
22	Direct access to spirocycles by Pd/WingPhos-catalyzed enantioselective cycloaddition of 1,3-enynes. Nature Communications, 2021 , 12 , 5667 .	5.8	30
23	Construction of Axially Chiral Indoles by Cycloaddition–Isomerization via Atroposelective Phosphoric Acid and Silver Sequential Catalysis. ACS Catalysis, 2022, 12, 8094-8103.	5. 5	30
24	Catalytic Asymmetric [4 + 2] Cycloaddition of <i>ortho</i> -Alkenyl Naphthols/Phenols with <i>ortho</i> -Quinone Methides: Highly Stereoselective Synthesis of Chiral 2,3,4-Trisubstituted Chromans. Journal of Organic Chemistry, 2020, 85, 5231-5244.	1.7	28
25	Regioselectivity Switch in Palladiumâ€Catalyzed Allenylic Cycloadditions of Allenic Esters: [4+1] or [4+3] Cycloaddition/Crossâ€Coupling. Angewandte Chemie - International Edition, 2019, 58, 4710-4713.	7.2	26
26	Transition-Metal-Catalyzed Asymmetric Couplings of \hat{l}_{\pm} -Aminoalkyl Fragments to Access Chiral Alkylamines. ACS Catalysis, 2021, 11, 6560-6577.	5 . 5	25
27	Catalytic asymmetric 1,4-type Friedel–Crafts (hetero)arylations of 1-azadienes: the highly enantioselective syntheses of chiral hetero-triarylmethanes. Organic Chemistry Frontiers, 2020, 7, 609-616.	2.3	23
28	Rhodium(I)/Zn(OTf) ₂ atalyzed Asymmetric Ring Opening/Cyclopropanation of Oxabenzonorbornadienes with Phosphorus Ylides. Angewandte Chemie - International Edition, 2019, 58, 15819-15823.	7.2	21
29	Catalytic Asymmetric and Divergent Synthesis of Tricyclic and Tetracyclic Spirooxindoles: Controllable Site-Selective Electrophilic Halocyclization of 1,6-Enynes. Organic Letters, 2019, 21, 6068-6073.	2.4	19
30	Dearomatization of naphthols using oxy-allyl cations: efficient construction of \hat{l}_{\pm} -all-carbon quaternary center-containing 2-(2-oxocycloalkyl)cycloalkyl diketones. Organic Chemistry Frontiers, 2018, 5, 2794-2798.	2.3	18
31	Enantiodivergent synthesis of tricyclic chromans: Remote nucleophilic groups switch selectivity in catalytic asymmetric cascade reactions of trifunctional substrates. Green Synthesis and Catalysis, 2021, 2, 241-245.	3.7	13
32	Palladium-Catalyzed Asymmetric Direct Intermolecular Allylation of α-Aryl Cyclic Vinylogous Esters: Divergent Synthesis of (+)-Oxomaritidine and (â^')-Mesembrine. Organic Letters, 2021, 23, 920-924.	2.4	12
33	A Multifaceted Directing Group Switching Ynones as Michael Donors in Chemo-, Enantio-, and γ-Selective 1,4-Conjugate Additions with Nitroolefins. Journal of Organic Chemistry, 2016, 81, 8296-8305.	1.7	10
34	Palladium-Catalyzed Intermolecular Asymmetric Dearomative Annulation of Phenols with Vinyl Cyclopropanes. Organic Letters, 2022, 24, 4865-4870.	2.4	9
35	Enantioselective Conjugate Additions of "Difficult―Ketones to Nitrodienynes and Tandem Annulations. Advanced Synthesis and Catalysis, 2017, 359, 89-95.	2.1	8
36	Enantioselective synthesis of chiral \hat{l}_{\pm} -alkynylated thiazolidones by tandem S-addition/acetalization of alkynyl imines. Organic and Biomolecular Chemistry, 2020, 18, 3117-3124.	1.5	8

Zніниі **S**нао

#	Article	IF	CITATION
37	Regioselectivity Switch in Palladiumâ€Catalyzed Allenylic Cycloadditions of Allenic Esters: [4+1] or [4+3] Cycloaddition/Crossâ€Coupling. Angewandte Chemie, 2019, 131, 4758-4761.	1.6	7
38	Enantioselective [3 + 2] Cycloaddition of Vinylcyclopropanes with Alkenyl <i>N</i> Heteroarenes Enabled by Palladium Catalysis. Organic Letters, 2022, 24, 3965-3969.	2.4	7
39	Dual C(sp3)–H Functionalization of Cyclic Ethers via Singlet Oxygen-Mediated Ring Opening and Ring Closing. Organic Letters, 2021, 23, 8267-8272.	2.4	6
40	Rhodium(I)/Zn(OTf) 2 atalyzed Asymmetric Ring Opening/Cyclopropanation of Oxabenzonorbornadienes with Phosphorus Ylides. Angewandte Chemie, 2019, 131, 15966-15970.	1.6	5