
Antonio Azevedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9350808/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of Nondestructive Testing of Ultrasound and Artificial Neural Networks to Estimate Compressive Strength of Concrete. Buildings, 2021, 11, 44.	3.1	30
2	Interface influence on moisture transport in buildings. Construction and Building Materials, 2018, 162, 480-488.	7.2	29
3	Artificial neural networks to assess the useful life of reinforced concrete elements deteriorated by accelerated chloride tests. Journal of Building Engineering, 2020, 31, 101445.	3.4	18
4	Preliminary Analysis of the Use of Construction Waste to Replace Conventional Aggregates in Concrete. Buildings, 2021, 11, 81.	3.1	15
5	Technological performance of recycled waste paper cellulosic fibre reinforced cement-based mortars. Journal of Building Pathology and Rehabilitation, 2021, 6, 1.	1.5	12
6	Influence of the contact area in the adherence of mortar – Ceramic tiles interface. Construction and Building Materials, 2020, 243, 118274.	7.2	11
7	Structural performance of unreinforced masonry elements made with concrete and horizontally perforated ceramic blocks – Laboratory tests. Construction and Building Materials, 2018, 182, 20-34.	7.2	9
8	Mortar Bond Strength: A Brief Literature Review, Tests for Analysis, New Research Needs and Initial Experiments. Materials, 2022, 15, 2332.	2.9	8
9	On the Use of Embedded Fiber Optic Sensors for Measuring Early-Age Strains in Concrete. Sensors, 2021, 21, 4171.	3.8	6
10	Ultrasonic Assessment of Damage in Concrete under Compressive and Thermal Loading Using Longitudinal and Transverse Waves. Russian Journal of Nondestructive Testing, 2019, 55, 808-816.	0.9	4
11	Influence of hydraulic contact interface on drying process of masonry walls. Drying Technology, 2020, 38, 1121-1137.	3.1	4
12	Diagnosis and Assessment of Deep Pile Cap Foundation of a Tall Building Affected by Internal Expansion Reactions. Buildings, 2021, 11, 104.	3.1	4
13	Hygric Permeance - New Calculation Methodology. , 2019, 24, 145-162.		3
14	The Effect of Soluble Mineral Salts in Ceramic Brick Masonry. International Journal of Civil Engineering, 2020, 18, 685-699.	2.0	3
15	Compression behaviour of clay bricks prisms, wallets and walls - Coating influence. , 2019, 18, 123-133.		3
16	Behind the Manufacturing of Industrial Clay Bricks: Drying Stage Predictions Using CFD. Advances in Materials Science and Engineering, 2022, 2022, 1-15.	1.8	3
17	Numerical Analysis of Bottle-Shaped Isolated Struts Concrete Deteriorated by Delayed Ettringite Formation. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 0, , 1.	1.9	2
18	Measurement of the Hygric Resistance of Concrete Blocks with Perfect Contact Interface: Influence of the Contact Area. Open Civil Engineering Journal, 2021, 15, 29-37.	0.8	2

ANTONIO AZEVEDO

#	Article	IF	CITATIONS
19	Diagnostic of Concrete Samples of Pile Caps Affected by Internal Swelling Reactions. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 0, , 1.	1.9	2
20	MOISTURE TRANSPORT ACROSS PERFECT CONTACT INTERFACE OF CERAMIC BLOCKS. Journal of Porous Media, 2020, 23, 101-119.	1.9	2
21	Moisture Measuring Device Based on Non-Destructive Method of Gamma Ray's Attenuation. Defect and Diffusion Forum, 2017, 380, 55-59.	0.4	1
22	Influence of Different Joints on Moisture Transport in Building Walls - A Brief Review. , 2019, 22, 19-23.		1
23	Avaliação experimental dos fatores de influência na aderência de revestimentos de gesso em pasta. Ambiente ConstruÃdo, 2021, 21, 349-357.	0.4	1
24	Preliminary Analysis of the Influence of Reinforced Mortar Coating on the Compressive Strength of Clay Bricks. Open Civil Engineering Journal, 2018, 12, 71-82.	0.8	1
25	Hygrothermal Properties of the Tested Materials. SpringerBriefs in Applied Sciences and Technology, 2019, , 3-32.	0.4	1
26	State-of-the-Art. SpringerBriefs in Applied Sciences and Technology, 2020, , 5-15.	0.4	1
27	Influence of Reinforced Mortar Coatings on the Compressive Strength of Masonry Prisms. Advanced Structured Materials, 2018, , 55-81.	0.5	Ο
28	Experimental Analyse of the Influence of Different Mortar Rendering Layers in Masonry Buildings. Advanced Structured Materials, 2018, , 83-110.	0.5	0
29	Hygric resistance in multilayer building materials – a prevision new methodology. MATEC Web of Conferences, 2019, 282, 02017.	0.2	0
30	Influence of Lime Solution on the Bonding Strength of a Mortar Coating Base. , 2019, 24, 1-10.		0
31	Structural Performance of Masonry Elements. SpringerBriefs in Applied Sciences and Technology, 2019, , .	0.4	Ο
32	Influence of the Coating System on the Acoustic, Thermal and Luminous Performance of Brazilian Buildings. Designs, 2020, 4, 34.	2.4	0
33	Water Absorption Curves versus Gamma-Ray Attenuation Profiles: A Comparative Analysis of Hygric Permeance Results. Defect and Diffusion Forum, 2020, 400, 32-37.	0.4	0
34	The Influence of Lime Solution in Kneading Water Substitution on Cement Roughcast and Mortar Coating. Materials, 2021, 14, 4174.	2.9	0
35	Hydric Resistance in Ceramic Samples with Contact Interfaces. U Porto Journal of Engineering, 2017, 3, 60-72.	0.4	0
36	Physical and Hygrothermal Material Properties. SpringerBriefs in Applied Sciences and Technology, 2019, , 7-20.	0.4	0

ANTONIO AZEVEDO

#	Article	IF	CITATIONS
37	Influence of Reinforced Mortar Coatings on the Compressive Strength of Masonry Prisms. SpringerBriefs in Applied Sciences and Technology, 2019, , 21-35.	0.4	Ο
38	Structural Performance of Resistant Masonry Elements. SpringerBriefs in Applied Sciences and Technology, 2019, , 37-68.	0.4	0
39	Interface Influence During the Drying Process. SpringerBriefs in Applied Sciences and Technology, 2019, , 33-59.	0.4	0
40	Moisture Content Determination. SpringerBriefs in Applied Sciences and Technology, 2020, , 17-29.	0.4	0
41	Interface Influence During the Wetting Process. SpringerBriefs in Applied Sciences and Technology, 2020, , 31-60.	0.4	0