Noreen Sher Akbar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9350632/publications.pdf

Version: 2024-02-01

295 papers 9,699 citations

51 h-index 71532 76 g-index

299 all docs

299 docs citations

times ranked

299

2079 citing authors

#	Article	IF	Citations
1	Heat transfer analysis of MHD viscous fluid in a ciliated tube with entropy generation. Mathematical Methods in the Applied Sciences, 2023, 46, 11495-11508.	1.2	1
2	Electroosmosis augmented MHD peristaltic transport of SWCNTs suspension in aqueous media. Journal of Thermal Analysis and Calorimetry, 2022, 147, 2509-2526.	2.0	35
3	Thermal Analysis on MHD Flow of Ethylene Glycol-based BNNTs Nanofluids via Peristaltically Induced Electroosmotic Pumping in a Curved Microchannel. Arabian Journal for Science and Engineering, 2022, 47, 7487-7503.	1.7	29
4	Entropy generation in electroosmotically aided peristaltic pumping of MoS ₂ Rabinowitsch nanofluid. Fluid Dynamics Research, 2022, 54, 015507.	0.6	20
5	Mathematical modeling of Aphron drilling nanofluid driven by electroosmotically modulated peristalsis through a pipe. Mathematical Modelling of Natural Phenomena, 2022, 17, 19.	0.9	9
6	Analysis of electroosmotic flow of silver-water nanofluid regulated by peristalsis using two different approaches for nanofluid. Journal of Computational Science, 2022, 62, 101696.	1.5	46
7	Exact solutions of an unsteady thermal conductive pressure driven peristaltic transport with temperature-dependent nanofluid viscosity. Case Studies in Thermal Engineering, 2022, 35, 102124.	2.8	27
8	Electroosmotically modulated peristaltic propulsion of TiO2/10W40 nanofluid in curved microchannel. International Communications in Heat and Mass Transfer, 2022, 136, 106208.	2.9	44
9	New trends of nanofluids to combat Staphylococcus aureus in clinical isolates. Journal of Thermal Analysis and Calorimetry, 2021, 143, 1893-1899.	2.0	22
10	A Theoretical Investigation on the Heat Transfer Ability of Water-Based Hybrid (Ag–Au) Nanofluids and Ag Nanofluids Flow Driven by Electroosmotic Pumping Through a Microchannel. Arabian Journal for Science and Engineering, 2021, 46, 2911-2927.	1.7	46
11	Viscous dissipation and joule heating effects on forced convection power law fluid flow through annular duct. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 5858-5865.	1.1	13
12	A comparative study of serological diagnosis of Dengue outbreak 2019. African Health Sciences, 2021, 21, 1117-1123.	0.3	2
13	Thermophysical Transport of Slip Flow Past a Convective Sheet with Suspended Carbon Nanotubes Submerged in Water. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2020, 90, 93-100.	0.8	O
14	3D MHD cross flow over an exponential stretching porous surface. Heat Transfer, 2020, 49, 1256-1280.	1.7	17
15	Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: A Sutterby fluid model. Microvascular Research, 2020, 132, 104062.	1.1	55
16	Numerical study of the electroosmotic flow of Al2O3–CH3OH Sisko nanofluid through a tapered microchannel in a porous environment. Applied Nanoscience (Switzerland), 2020, 10, 4161-4176.	1.6	26
17	Numerical simulation of Electrokinetically Driven Peristaltic Pumping of Silver-Water Nanofluids in an asymmetric microchannel. Chinese Journal of Physics, 2020, 68, 745-763.	2.0	18
18	Heat transfer analysis of peristaltic flow of a Phan-Thien–Tanner fluid model due to metachronal wave of cilia. Biomechanics and Modeling in Mechanobiology, 2020, 19, 1925-1933.	1.4	30

#	Article	IF	CITATIONS
19	Biological analysis of Carreau nanofluid in an endoscope with variable viscosity. Physica Scripta, 2020, 95, 055201.	1.2	23
20	A comparative study on the role of nanoparticle dispersion in electroosmosis regulated peristaltic flow of water. AEJ - Alexandria Engineering Journal, 2020, 59, 943-956.	3.4	46
21	Chemical reaction and heat source/sink effect on magnetonano Prandtl-Eyring fluid peristaltic propulsion in an inclined symmetric channel. Chinese Journal of Physics, 2020, 65, 300-313.	2.0	30
22	Comparative study on ethylene glycol based Ag-Al ₂ O ₃ and Al ₂ O ₃ nanofluids flow driven by electroosmotic and peristaltic pumping: a nano-coolant for radiators. Physica Scripta, 2020, 95, 115208.	1.2	12
23	Ferromagnetic nano model study for the peristaltic flow in a plumb duct with permeable walls. Microsystem Technologies, 2019, 25, 1227-1234.	1.2	12
24	Biomechanically driven flow of a magnetohydrodynamic bio-fluid in a micro-vessel with slip and convective boundary conditions. Microsystem Technologies, 2019, 25, 151-173.	1.2	9
25	Nanoparticles shape effects on peristaltic transport of nanofluids in presence of magnetohydrodynamics. Microsystem Technologies, 2019, 25, 283-294.	1.2	31
26	Heat and peristaltic propagation of water based nanoparticles with variable fluid features. Physica Scripta, 2019, 94, 125704.	1.2	11
27	Slip analysis with thermally developed peristaltic motion of nanoparticles under the influence of variable viscosity in vertical configuration. European Physical Journal Plus, 2019, 134, 1.	1.2	8
28	Physiological fluid flow analysis by means of contraction and expansion with addition of hybrid nanoparticles. European Physical Journal Plus, 2019, 134, 1.	1.2	16
29	Peristaltic pumping with double diffusive natural convective nanofluid in a lopsided channel with accounting thermophoresis and Brownian moment. Microsystem Technologies, 2019, 25, 1217-1226.	1.2	18
30	Mechanistic investigation for shape factor analysis of SiO ₂ /MoS ₂ – ethylene glycol inside a vertical channel influenced by oscillatory temperature gradient. Canadian Journal of Physics, 2019, 97, 950-958.	0.4	27
31	Effects of Thermal-Diffusion and Diffusion-Thermo on Oblique Stagnation Point Flow of Couple Stress Casson Fluid Over a Stretched Horizontal Riga Plate with Higher Order Chemical Reaction. Journal of Nanofluids, 2019, 8, 94-102.	1.4	40
32	Mathematical modelling of pressure-driven micropolar biological flow due to metachronal wave propulsion of beating cilia. Mathematical Biosciences, 2018, 301, 121-128.	0.9	39
33	Analytical approach to entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium. Journal of Hydrodynamics, 2018, 30, 296-306.	1.3	31
34	Performance of hybrid nanofluid (Cu-CuO/water) on MHD rotating transport in oscillating vertical channel inspired by Hall current and thermal radiation. AEJ - Alexandria Engineering Journal, 2018, 57, 1943-1954.	3.4	94
35	Non-aligned stagnation point flow of radiating Casson fluid over a stretching surface. AEJ - Alexandria Engineering Journal, 2018, 57, 939-946.	3.4	32
36	Nanoparticle analysis of non-Newtonian fluid with slip and multiple convective boundary conditions. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2018, 232, 369-379.	1.4	3

#	Article	IF	Citations
37	OBLIQUE STAGNATION-POINT FLOW OF NON-NEWTONIAN FLUID WITH VARIABLE VISCOSITY. Heat Transfer Research, 2018, 49, 1587-1603.	0.9	2
38	Transient peristaltic diffusion of nanofluids: A model of micropumps in medical engineering. Journal of Hydrodynamics, 2018, 30, 1001-1011.	1.3	26
39	Numerical Simulation of Nanoparticles with Variable Viscosity over a Stretching Sheet., 2018,,.		3
40	Nanocomposite microemulsions study of single-walled carbon nanotubes in arteries., 2018,, 649-665.		2
41	Numerical investigation of Cattanneo-Christov heat flux in CNT suspended nanofluid flow over a stretching porous surface with suction and injection. Discrete and Continuous Dynamical Systems - Series S, 2018, 11, 583-594.	0.6	16
42	Heat transfer analysis of CNT suspended nanofluid through annulus sector duct. International Journal of Mechanical Sciences, 2017, 122, 362-369.	3.6	19
43	Framing the MHD mixed convective performance of CNTs in rotating vertical channel inspired by thermal deposition: Closed form solutions. Journal of Molecular Liquids, 2017, 233, 334-343.	2.3	40
44	Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 49-58.	2.7	87
45	Entropy generation analysis for the peristaltic flow of Cu-water nanofluid in a tube with viscous dissipation. Journal of Hydrodynamics, 2017, 29, 135-143.	1.3	18
46	Variable fluid properties analysis with water based CNT nanofluid over a sensor sheet: Numerical solution. Journal of Molecular Liquids, 2017, 232, 471-477.	2.3	19
47	Nanostructures study of CNT nanofluids transport with temperature-dependent variable viscosity in a muscular tube. European Physical Journal Plus, 2017, 132, 1.	1.2	16
48	Carbon nanotube analysis for an unsteady physiological flow in a non-uniform channel of finite length. European Physical Journal Plus, 2017, 132, 1.	1.2	5
49	Magneto-nanofluid flow with heat transfer past a stretching surface for the new heat flux model using numerical approach. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 1215-1230.	1.6	13
50	Biomechanically driven unsteady non-uniform flow of Copper water and Silver water nanofluids through finite length channel. Computer Methods and Programs in Biomedicine, 2017, 146, 1-9.	2.6	12
51	Numerical simulation of the forced convective nanofluid flow through an annulus sector duct. Chinese Journal of Physics, 2017, 55, 1400-1411.	2.0	24
52	Effects of single and multi-walled carbon nano tubes on water and engine oil based rotating fluids with internal heating. Advanced Powder Technology, 2017, 28, 1991-2002.	2.0	32
53	MHD 3D free convective flow of nanofluid over an exponentially stretching sheet with chemical reaction. Advanced Powder Technology, 2017, 28, 2159-2166.	2.0	62
54	Entropy Generation Analysis in Convective Ferromagnetic Nano Blood Flow Through a Composite Stenosed Arteries with Permeable Wall. Communications in Theoretical Physics, 2017, 67, 554.	1.1	16

#	Article	IF	Citations
55	3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Technology, 2017, 315, 205-215.	2.1	147
56	Mathematical model for ciliary-induced transport in MHD flow of Cu-H 2 O nanofluids with magnetic induction. Chinese Journal of Physics, 2017, 55, 947-962.	2.0	36
57	Advanced Study of Unsteady Heat and Chemical Reaction with Ramped Wall and Slip Effect on a Viscous Fluid. Communications in Theoretical Physics, 2017, 67, 301.	1.1	7
58	Natural Propulsion with Lorentz Force and Nanoparticles in a Bioinspired Lopsided Ciliated Channel. Journal of Bionic Engineering, 2017, 14, 172-181.	2.7	6
59	Dynamics of variable-viscosity nanofluid flow with heat transfer in a flexible vertical tube under propagating waves. Results in Physics, 2017, 7, 413-425.	2.0	24
60	Heat transfer analysis with temperature-dependent viscosity for the peristaltic flow of nano fluid with shape factor over heated tube. International Journal of Hydrogen Energy, 2017, 42, 25088-25101.	3.8	15
61	Hydromagnetic Blood Flow of Sisko Fluid in a Non-uniform Channel Induced by Peristaltic Wave. Communications in Theoretical Physics, 2017, 68, 103.	1.1	10
62	Nanoparticle shapes effects on unsteady physiological transport of nanofluids through a finite length non-uniform channel. Results in Physics, 2017, 7, 2477-2484.	2.0	23
63	Three dimensional MHD flow of nanofluid over an exponential porous stretching sheet with convective boundary conditions. Thermal Science and Engineering Progress, 2017, 3, 133-140.	1.3	46
64	Rheological Analysis of CNT Suspended Nanofluid with Variable Viscosity: Numerical Solution. Communications in Theoretical Physics, 2017, 67, 681.	1.1	8
65	Physical hydrodynamic propulsion model study on creeping viscous flow through a ciliated porous tube. Pramana - Journal of Physics, 2017, 88, 1.	0.9	20
66	Variable-viscosity thermal hemodynamic slip flow conveying nanoparticles through a permeable-walled composite stenosed artery. European Physical Journal Plus, 2017, 132, 1.	1.2	19
67	MHD convective heat transfer of nanofluids through a flexible tube with buoyancy: A study of nano-particle shape effects. Advanced Powder Technology, 2017, 28, 453-462.	2.0	33
68	BIOPHYSICAL HEAT TRANSFER STUDY FOR THE CONTRACTION AND EXPANSION OF MUSCLES WITH MULTI-WALL CARBON NANOTUBES. Journal of Mechanics in Medicine and Biology, 2017, 17, 1750014.	0.3	3
69	Carbon nanotube (CNT)-suspended nanofluid analysis due to metachronal beating of cilia with entropy generation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 2001-2012.	0.8	7
70	Double Diffusion Effects on Magnetohydrodynamic Non-Newtonian Fluid Nanoparticles. Journal of Computational and Theoretical Nanoscience, 2017, 14, 694-703.	0.4	4
71	DOUBLE-DIFFUSIVE NATURAL CONVECTIVE PERISTALTIC PRANDTL FLOW IN A POROUS CHANNEL SATURATED WITH A NANOFLUID. Heat Transfer Research, 2017, 48, 283-290.	0.9	15
72	STUDY OF PERISTALTIC FLOW OF NANOFLUID WITH ENTROPY GENERATION IN A POROUS MEDIUM. Journal of Porous Media, 2017, 20, 461-478.	1.0	72

#	Article	IF	CITATIONS
73	MHD effect on nanofluid with energy and hydrothermal behavior between two collateral plates: Application of new semi analytical technique. Thermal Science, 2017, 21, 2081-2093.	0.5	7
74	MHD dissipative flow and heat transfer of Casson fluids due to metachronal wave propulsion of beating cilia with thermal and velocity slip effects under an oblique magnetic field. Acta Astronautica, 2016, 128, 1-12.	1.7	68
75	Stagnation Point Flow Study with Water Based Nanoparticles Aggregation Over a Stretching Sheet: Numerical Solution. Journal of Computational and Theoretical Nanoscience, 2016, 13, 8615-8619.	0.4	5
76	Free Convective Nonaligned Non-Newtonian Flow with Non-linear Thermal Radiation. Communications in Theoretical Physics, 2016, 66, 687-693.	1.1	24
77	Peristaltic transport of bi-viscosity fluids through a curved tube: A mathematical model for intestinal flow. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2016, 230, 817-828.	1.0	17
78	Non-Newtonian model study for blood flow through a tapered artery with a stenosis. AEJ - Alexandria Engineering Journal, 2016, 55, 321-329.	3.4	19
79	Blood flow suspension in tapered stenosed arteries for Walter's B fluid model. Computer Methods and Programs in Biomedicine, 2016, 132, 45-55.	2.6	12
80	MODELING NANOPARTICLE GEOMETRY EFFECTS ON PERISTALTIC PUMPING OF MEDICAL MAGNETOHYDRODYNAMIC NANOFLUIDS WITH HEAT TRANSFER. Journal of Mechanics in Medicine and Biology, 2016, 16, 1650088.	0.3	33
81	Natural Convective Flow Analysis For Nanofluids With Reynold [,] s Model of Viscosity. International Journal of Chemical Reactor Engineering, 2016, 14, 1101-1111.	0.6	4
82	Mixed convective oblique flow of a Casson fluid with partial slip, internal heating and homogeneous–heterogeneous reactions. Journal of Molecular Liquids, 2016, 222, 1010-1019.	2.3	63
83	A numerical study of magnetohydrodynamic transport of nanofluids over a vertical stretching sheet with exponential temperature-dependent viscosity and buoyancy effects. Chemical Physics Letters, 2016, 661, 20-30.	1.2	88
84	Study of heat transfer on physiological driven movement with CNT nanofluids and variable viscosity. Computer Methods and Programs in Biomedicine, 2016, 136, 21-29.	2.6	15
85	A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube. Advanced Powder Technology, 2016, 27, 2175-2185.	2.0	169
86	Thermally developing MHD peristaltic transport of nanofluids with velocity and thermal slip effects. European Physical Journal Plus, 2016, 131, 1.	1.2	17
87	Effect of variable thermal conductivity and thermal radiation with CNTS suspended nanofluid over a stretching sheet with convective slip boundary conditions: Numerical study. Journal of Molecular Liquids, 2016, 222, 279-286.	2.3	71
88	Numerical study of forced convective power law fluid flow through an annulus sector duct. European Physical Journal Plus, 2016, 131, 1.	1.2	19
89	Bio mathematical venture for the metallic nanoparticles due to ciliary motion. Computer Methods and Programs in Biomedicine, 2016, 134, 43-51.	2.6	23
90	Rheological properties of Reiner-Rivlin fluid model for blood flow through tapered artery with stenosis. Journal of the Egyptian Mathematical Society, 2016, 24, 138-142.	0.6	20

#	Article	IF	Citations
91	ANTI-BACTERIAL APPLICATIONS FOR NEW THERMAL CONDUCTIVITY MODEL IN ARTERIES WITH CNT SUSPENDED NANOFLUID. Journal of Mechanics in Medicine and Biology, 2016, 16, 1650063.	0.3	10
92	Copper oxide nanoparticles analysis with water as base fluid for peristaltic flow in permeable tube with heat transfer. Computer Methods and Programs in Biomedicine, 2016, 130, 22-30.	2.6	75
93	Entropy generation analysis for metachronal beating of ciliated Cu-water nanofluid with magnetic field. International Journal of Exergy, 2016, 19, 41.	0.2	9
94	Magnetic field analysis in a suspension of gyrotactic microorganisms and nanoparticles over a stretching surface. Journal of Magnetism and Magnetic Materials, 2016, 410, 72-80.	1.0	65
95	Metallic nanoparticles analysis for the blood flow in tapered stenosed arteries: Application in nanomedicines. International Journal of Biomathematics, 2016, 09, 1650002.	1.5	22
96	Ferromagnetic effects for peristaltic flow of Cu–water nanofluid for different shapes of nanosize particles. Applied Nanoscience (Switzerland), 2016, 6, 379-385.	1.6	39
97	Impulsion of induced magnetic field for Brownian motion of nanoparticles in peristalsis. Applied Nanoscience (Switzerland), 2016, 6, 359-370.	1.6	40
98	Influence of thermal and velocity slip on the peristaltic flow of Cu–water nanofluid with magnetic field. Applied Nanoscience (Switzerland), 2016, 6, 417-423.	1.6	4
99	NANOPARTICLE FRACTION IN AN ANNULUS IN THE JEFFREY FLUID MODEL. Heat Transfer Research, 2016, 47, 707-720.	0.9	2
100	Entropy Generation Analysis for the Peristaltic Flow of Cu-water Nanofluid with Magnetic Field in a Lopsided Channel. Journal of Applied Fluid Mechanics, 2016, 9, 605-613.	0.4	4
101	Influence of Magnetic Field and Slip on Jeffrey Fluid in a Ciliated Symmetric Channel with Metachronal Wave Pattern. Journal of Applied Fluid Mechanics, 2016, 9, 565-572.	0.4	14
102	Non-Aligned Ethylene-Glycol 30% Based Stagnation Point Fluid over a Stretching Surface with Hematite Nano Particles. Journal of Applied Fluid Mechanics, 2016, 9, 1359-1366.	0.4	25
103	Ferromagnetic effects for nanofluid venture through composite permeable stenosed arteries with different nanosize particles. AIP Advances, 2015, 5, .	0.6	28
104	Heat transfer analysis of Rabinowitsch fluid flow due to metachronal wave of cilia. Results in Physics, 2015, 5, 92-98.	2.0	25
105	Peristaltic Flow of a Sutterby Nanofluid with Double-Diffusive Natural Convection. Journal of Computational and Theoretical Nanoscience, 2015, 12, 1546-1552.	0.4	13
106	Heat Transfer Analysis for the Peristaltic Flow of Herschel–Bulkley Fluid in a Nonuniform Inclined Channel. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2015, 70, 23-32.	0.7	15
107	Oblique stagnation flow of Jeffery fluid over a stretching convective surface. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 454-471.	1.6	27
108	Physiological Transportation of Casson Fluid in a Plumb Duct. Communications in Theoretical Physics, 2015, 63, 347-352.	1.1	26

#	Article	IF	CITATIONS
109	A New Thermal Conductivity Model With Shaped Factor Ferromagnetism Nanoparticles Study for the Blood Flow in Non-Tapered Stenosed Arteries. IEEE Transactions on Nanobioscience, 2015, 14, 780-789.	2.2	13
110	Natural Convective MHD Peristaltic Flow of a Nanofluid with Convective Surface Boundary Conditions. Journal of Computational and Theoretical Nanoscience, 2015, 12, 257-262.	0.4	8
111	Double-Diffusive Natural Convective Peristaltic Flow of a Nanofluid in an Asymmetric Porous Channel. Journal of Computational and Theoretical Nanoscience, 2015, 12, 1553-1559.	0.4	4
112	Oblique Stagnation Point Flow of Carbon Nano Tube Based Fluid Over a Convective Surface. Journal of Computational and Theoretical Nanoscience, 2015, 12, 605-612.	0.4	20
113	Application of Eyring-Powell Fluid Model in Peristalsis with Nano Particles. Journal of Computational and Theoretical Nanoscience, 2015, 12, 94-100.	0.4	26
114	Magnetic field effects for copper suspended nanofluid venture through a composite stenosed arteries with permeable wall. Journal of Magnetism and Magnetic Materials, 2015, 381, 285-291.	1.0	45
115	Influence of magnetic field for metachoronical beating of cilia for nanofluid with Newtonian heating. Journal of Magnetism and Magnetic Materials, 2015, 381, 235-242.	1.0	43
116	Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet. Journal of Magnetism and Magnetic Materials, 2015, 382, 355-358.	1.0	210
117	Biomathematical analysis of carbon nanotubes due to ciliary motion. International Journal of Biomathematics, 2015, 08, 1550023.	1.5	15
118	Heat transfer analysis of bi-viscous ciliary motion fluid. International Journal of Biomathematics, 2015, 08, 1550026.	1.5	12
119	Bioconvection peristaltic flow in an asymmetric channel filled by nanofluid containing gyrotactic microorganism. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 214-224.	1.6	37
120	Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field. Energy, 2015, 82, 23-30.	4.5	66
121	Influence of induced magnetic field and heat flux with the suspension of carbon nanotubes for the peristaltic flow in a permeable channel. Journal of Magnetism and Magnetic Materials, 2015, 381, 405-415.	1.0	156
122	Carbon Nano Tubes Analysis for Blood Flow in Stenosed Tapered Arteries. IEEE Nanotechnology Magazine, 2015, 14, 452-463.	1.1	5
123	Entropy Generation Analysis for a CNT Suspension Nanofluid in Plumb Ducts with Peristalsis. Entropy, 2015, 17, 1411-1424.	1.1	41
124	Peristaltic flow with thermal conductivity of H $_2$ O + Cu nanofluid and entropy generation. Results in Physics, 2015, 5, 115-124.	2.0	57
125	Ferromagnetic CNT suspended H2O+Cu nanofluid analysis through composite stenosed arteries with permeable wall. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 72, 70-76.	1.3	26
126	Carbon nanotubes analysis for the peristaltic flow in curved channel with heat transfer. Applied Mathematics and Computation, 2015, 259, 231-241.	1.4	26

#	Article	IF	CITATIONS
127	Mathematical analysis of Phan-Thien–Tanner fluid model for blood in arteries. International Journal of Biomathematics, 2015, 08, 1550064.	1.5	2
128	Mixed convection analysis for blood flow through arteries on Williamson fluid model. International Journal of Biomathematics, 2015, 08, 1550045.	1.5	6
129	Biomathematical study of Sutterby fluid model for blood flow in stenosed arteries. International Journal of Biomathematics, 2015, 08, 1550075.	1.5	20
130	Biological Analysis of Nano Prandtl Fluid Model in a Diverging Tube. Journal of Computational and Theoretical Nanoscience, 2015, 12, 105-112.	0.4	6
131	Biofluidics Study in Digestive System with Thermal Conductivity of Shape Nanosize H2O+Cu Nanoparticles. Journal of Bionic Engineering, 2015, 12, 656-663.	2.7	21
132	Endoscopy Analysis for the Peristaltic Flow of Nanofluids Containing Carbon Nanotubes with Heat Transfer. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2015, 70, 745-755.	0.7	11
133	Effects of nanoparticles on the peristaltic motion of tangent hyperbolic fluid model in an annulus. AEJ - Alexandria Engineering Journal, 2015, 54, 843-851.	3.4	26
134	CNT suspended CuO+H2O nano fluid and energy analysis for the peristaltic flow in a permeable channel. AEJ - Alexandria Engineering Journal, 2015, 54, 623-633.	3.4	14
135	Mathematical study for peristaltic flow of Williamson fluid in a curved channel. International Journal of Biomathematics, 2015, 08, 1550005.	1.5	9
136	Heat transfer and carbon nano tubes analysis for the peristaltic flow in a diverging tube. Meccanica, 2015, 50, 39-47.	1.2	22
137	Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: Application in crude oil refinement. Journal of Magnetism and Magnetic Materials, 2015, 378, 463-468.	1.0	109
138	Combined effects of magnetic field and partial slip on obliquely striking rheological fluid over a stretching surface. Journal of Magnetism and Magnetic Materials, 2015, 378, 457-462.	1.0	52
139	Metachronal beating of cilia under the influence of Casson fluid and magnetic field. Journal of Magnetism and Magnetic Materials, 2015, 378, 320-326.	1.0	61
140	Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 65, 17-23.	1.3	180
141	Numerical and analytical simulation of peristaltic flow of a Jeffrey-six constant fluid. Applicable Analysis, 2015, 94, 1420-1438.	0.6	6
142	DOUBLE-DIFFUSIVE NATURAL CONVECTIVE PERISTALTIC FLOW OF A JEFFREY NANOFLUID IN A POROUS CHANNEL. Heat Transfer Research, 2014, 45, 293-307.	0.9	28
143	Influence of heat and chemical reactions on the Sisko fluid model for blood flow through a tapered artery with a mild stenosis. Quaestiones Mathematicae, 2014, 37, 157-177.	0.2	11
144	Blood flow of Carreau fluid in a tapered artery with mixed convection. International Journal of Biomathematics, 2014, 07, 1450068.	1.5	3

#	Article	IF	Citations
145	Nanofluid Analysis for the Intestinal Flow in a Symmetric Channel. IEEE Transactions on Nanobioscience, 2014, 13, 392-396.	2.2	6
146	Blood flow analysis in tapered stenosed arteries with pseudoplastic characteristics. International Journal of Biomathematics, 2014, 07, 1450065.	1.5	11
147	Metallic Nanoparticles Analysis for the Peristaltic Flow in an Asymmetric Channel With MHD. IEEE Nanotechnology Magazine, 2014, 13, 357-361.	1.1	53
148	Blood flow study of Williamson fluid through stenosed arteries with permeable walls. European Physical Journal Plus, 2014, 129, 1.	1.2	9
149	Peristaltic flow of a tangent hyperbolic fluid with convective boundary condition. European Physical Journal Plus, 2014, 129, 1.	1.2	27
150	Peristaltic Flow of Johnson-Segalman Fluid with Nanoparticles. Journal of Aerospace Engineering, 2014, 27, 404-413.	0.8	1
151	Theoretical Analysis for Peristaltic Flow of Carreau Nano Fluid in a Curved Channel with Compliant Walls. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1443-1452.	0.4	11
152	Peristaltic Flow of a Nanofluid in a Diverging Tube for Jeffrey Fluid. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1335-1341.	0.4	14
153	Influence of Heat and Mass Transfer on Micropolar Fluid of Blood Flow Through a Tapered Stenosed Arteries with Permeable Walls. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1156-1163.	0.4	37
154	MHD Peristaltic Flow with Carbon Nanotubes in an Asymmetric Channel. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1323-1329.	0.4	26
155	Oblique Stagnation Point Flow of a Casson-Nano Fluid Towards a Stretching Surface with Heat Transfer. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1422-1432.	0.4	43
156	Series solution of unsteady peristaltic flow of a Carreau fluid in small intestines. International Journal of Biomathematics, 2014, 07, 1450049.	1.5	11
157	Application of Rabinowitsch Fluid Model in Peristalsis. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2014, 69, 473-480.	0.7	15
158	Unsteady Oscillatory Stagnation Point Flow of a Jeffrey Fluid. Journal of Aerospace Engineering, 2014, 27, 636-643.	0.8	15
159	Series solution of unsteady peristaltic flow of a Carreau fluid in eccentric cylinders. Ain Shams Engineering Journal, 2014, 5, 293-304.	3.5	33
160	Mathematical model for the peristaltic flow of nanofluid through eccentric tubes comprising porous medium. Applied Nanoscience (Switzerland), 2014, 4, 733-743.	1.6	14
161	Peristaltic Sisko nano fluid in an asymmetric channel. Applied Nanoscience (Switzerland), 2014, 4, 663-673.	1.6	29
162	Mathematical model for the peristaltic flow of Jeffrey fluid with nanoparticles phenomenon through a rectangular duct. Applied Nanoscience (Switzerland), 2014, 4, 613-624.	1.6	29

#	Article	IF	Citations
163	Investigation of peristaltic flow of Williamson nanofluid in a curved channel with compliant walls. Applied Nanoscience (Switzerland), 2014, 4, 511-521.	1.6	40
164	Effects of heat and mass transfer on peristaltic flow of a nanofluid between eccentric cylinders. Applied Nanoscience (Switzerland), 2014, 4, 393-404.	1.6	44
165	Blood flow of nanofluid through an artery with composite stenosis and permeable walls. Applied Nanoscience (Switzerland), 2014, 4, 919-926.	1.6	77
166	Simulation of peristaltic flow of chyme in small intestine for couple stress fluid. Meccanica, 2014, 49, 325-334.	1.2	30
167	Thermal and velocity slip effects on the MHD peristaltic flow with carbon nanotubes in an asymmetric channel: application of radiation therapy. Applied Nanoscience (Switzerland), 2014, 4, 849-857.	1.6	33
168	The combined effects of slip and convective boundary conditions on stagnation-point flow of CNT suspended nanofluid over a stretching sheet. Journal of Molecular Liquids, 2014, 196, 21-25.	2.3	113
169	Metachronal beating of cilia under influence of Hartmann layer and heat transfer. European Physical Journal Plus, 2014, 129, 1.	1.2	28
170	Thermo-diffusion effects on MHD oblique stagnation-point flow of a viscoelastic fluid over a convective surface. European Physical Journal Plus, 2014, 129, 1.	1.2	17
171	Heat transfer study of an individual multiwalled carbon nanotube due to metachronal beating of cilia. International Communications in Heat and Mass Transfer, 2014, 59, 114-119.	2.9	19
172	Heat transfer analysis of viscoelastic fluid flow due to metachronal wave of cilia. International Journal of Biomathematics, 2014, 07, 1450066.	1.5	23
173	Interaction of nanoparticles for the peristaltic flow in an asymmetric channel with the induced magnetic field. European Physical Journal Plus, 2014, 129, 1.	1.2	99
174	Blood flow analysis of Prandtl fluid model in tapered stenosed arteries. Ain Shams Engineering Journal, 2014, 5, 1267-1275.	3.5	33
175	Copper nanoparticle analysis for peristaltic flow in a curved channel with heat transfer characteristics. European Physical Journal Plus, 2014, 129, 1.	1.2	10
176	Copper nanoparticles impinging on a curved channel with compliant walls and peristalsis. European Physical Journal Plus, 2014, 129, 1.	1.2	26
177	Influence of heat generation and heat flux on peristaltic flow with interacting nanoparticles. European Physical Journal Plus, 2014, 129, 1.	1.2	42
178	Heat transfer analysis of the peristaltic instinct of biviscosity fluid with the impact of thermal and velocity slips. International Communications in Heat and Mass Transfer, 2014, 58, 193-199.	2.9	14
179	CNT suspended nanofluid analysis in a flexible tube with ciliated walls. European Physical Journal Plus, 2014, 129, 1.	1.2	38
180	Nano fluid flow in tapering stenosed arteries with permeable walls. International Journal of Thermal Sciences, 2014, 85, 54-61.	2.6	65

#	Article	IF	CITATIONS
181	MHD stagnation point flow of Carreau fluid toward a permeable shrinking sheet: Dual solutions. Ain Shams Engineering Journal, 2014, 5, 1233-1239.	3.5	96
182	Biological Analysis of Jeffrey Nanofluid in a Curved Channel With Heat Dissipation. IEEE Transactions on Nanobioscience, 2014, 13, 431-437.	2.2	9
183	HEAT AND MASS TRANSFER EFFECTS ON CARREAU FLUID MODEL FOR BLOOD FLOW THROUGH A TAPERED ARTERY WITH A STENOSIS. International Journal of Biomathematics, 2014, 07, 1450004.	1.5	20
184	Carreau fluid model for blood flow through a tapered artery with a stenosis. Ain Shams Engineering Journal, 2014, 5, 1307-1316.	3.5	85
185	Dual solutions in MHD stagnation-point flow of Prandtl fluid impinging on shrinking sheet. Applied Mathematics and Mechanics (English Edition), 2014, 35, 813-820.	1.9	58
186	Peristaltic impulsion of MHD biviscosity fluid in a lopsided channel: Closed-form solution. European Physical Journal Plus, 2014, 129, 1.	1.2	15
187	MHD Three-Dimensional Boundary Layer Flow of Casson Nanofluid Past a Linearly Stretching Sheet With Convective Boundary Condition. IEEE Nanotechnology Magazine, 2014, 13, 109-115.	1.1	144
188	Optimized analytical solution for oblique flow of a Casson-nano fluid with convective boundary conditions. International Journal of Thermal Sciences, 2014, 78, 90-100.	2.6	121
189	Peristaltic Flow of Cu-Water Nanofluid in a Tube. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1411-1416.	0.4	14
190	The influence of wall flexibility on unsteady peristaltic flow of Prandtl fluid in a three dimensional rectangular duct. Applied Mathematics and Computation, 2014, 241, 389-400.	1.4	25
191	Numerical simulation of peristaltic flow of a Carreau nanofluid in an asymmetric channel. AEJ - Alexandria Engineering Journal, 2014, 53, 191-197.	3.4	76
192	Exact solution of peristaltic flow of biviscosity fluid in an endoscope: A note. AEJ - Alexandria Engineering Journal, 2014, 53, 449-454.	3.4	27
193	Nanoparticles Fraction on the Peristaltic Flow of Third Order Fluid. Journal of Computational and Theoretical Nanoscience, 2014, 11 , $47-52$.	0.4	8
194	Heat and Mass Transfer Analysis of Peristaltic Flow of Nanofluid in a Vertical Rectangular Duct by Using the Optimized Series Solution and Genetic Algorithm. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1133-1149.	0.4	13
195	Peristaltic Flow with Maxwell Carbon Nanotubes Suspensions. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1642-1648.	0.4	23
196	Endoscopic Effects on the Peristaltic Flow of Cu-Water Nanofluid. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1150-1155.	0.4	25
197	Peristaltic Flow of a Prandtl Nano Fluid in an Asymmetric Porous Channel: Numerical Solutions. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1342-1348.	0.4	5
198	SIMULATION OF THE SECOND-GRADE FLUID MODEL AND HEATING SCHEME OF THE BLOOD FLOW THROUGH A TAPERED ARTERY WITH MASS TRANSFER. Heat Transfer Research, 2014, 45, 391-408.	0.9	6

#	Article	IF	CITATIONS
199	MHD Peristaltic Flow of a Nanofluid with Newtonian Heating. Current Nanoscience, 2014, 10, 863-868.	0.7	7
200	Heat Transfer Analysis on Transport of Copper Nanofluids Due to Metachronal Waves of Cilia. Current Nanoscience, 2014, 10, 807-815.	0.7	23
201	Free Convective MHD Peristaltic Flow of a Jeffrey Nanofluid with Convective Surface Boundary Condition& App.; #58; A Biomedicine-Nano Model. Current Nanoscience, 2014, 10, 432-440.	0.7	29
202	Mathematical Model for Blood Flow Through Tapered Arteries with Temperature Dependent Viscosity. Journal of Advanced Mathematics and Applications, 2014, 3, 122-129.	0.5	0
203	Peristaltic flow of a micropolar fluid with nano particles in small intestine. Applied Nanoscience (Switzerland), 2013, 3, 461-468.	1.6	17
204	Numerical solutions of Magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian Journal of Physics, 2013, 87, 1121-1124.	0.9	188
205	Nanoparticle analysis for blood flow of Prandtl fluid model with stenosis. International Nano Letters, 2013, 3, 1.	2.3	37
206	Characteristics of Jeffrey fluid model for peristaltic flow of chyme in small intestine with magnetic field. Results in Physics, 2013, 3, 152-160.	2.0	47
207	Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition. Chinese Journal of Aeronautics, 2013, 26, 1389-1397.	2.8	149
208	Biomathematical study of nonâ€Newtonian nanoï¬,uid in a diverging tube. Heat Transfer - Asian Research, 2013, 42, 389-402.	2.8	10
209	Intestinal Flow of a Couple Stress Nanofluid in Arteries. IEEE Transactions on Nanobioscience, 2013, 12, 332-339.	2.2	20
210	Numerical study of Williamson nano fluid flow in an asymmetric channel. Results in Physics, 2013, 3, 161-166.	2.0	58
211	MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. AEJ - Alexandria Engineering Journal, 2013, 52, 577-582.	3.4	267
212	Non-orthogonal stagnation point flow of a nano non-Newtonian fluid towards a stretching surface with heat transfer. International Journal of Heat and Mass Transfer, 2013, 57, 679-689.	2.5	105
213	Non-orthogonal stagnation point flow of a micropolar second grade fluid towards a stretching surface with heat transfer. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 586-595.	2.7	24
214	Endoscopic Effects on the Peristaltic Flow of a Jeffrey Six-Constant Fluid Model with Variable Viscosity. Journal of Aerospace Engineering, 2013, 26, 535-543.	0.8	5
215	Peristaltic Flow of Hyperbolic Tangent Fluid in a Diverging Tube with Heat and Mass Transfer. Journal of Energy Engineering - ASCE, 2013, 139, 124-135.	1.0	7
216	Nano Particle Analysis for the Steady Blood Flow of Jeffrey Fluid with Stenosis with New Analytical Techniques. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2751-2765.	0.4	19

#	Article	IF	Citations
217	Nano Sutterby Fluid Model for the Peristaltic Flow in Small Intestines. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2491-2499.	0.4	37
218	Nanoparticle Analysis for Non-Orthogonal Stagnation Point Flow of a Third Order Fluid Towards a Stretching Surface. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2737-2747.	0.4	23
219	Biomechanical Analysis of Eyring Prandtl Fluid Model for Blood Flow in Stenosed Arteries. International Journal of Nonlinear Sciences and Numerical Simulation, 2013, 14, 345-353.	0.4	8
220	Influence of mixed convection on blood flow of Jeffrey fluid through a tapered stenosed artery. Thermal Science, 2013, 17, 533-546.	0.5	5
221	Effects of Induced Magnetic Field on the Peristaltic Flow of an Eyring-Powell Fluid. Journal of Aerospace Engineering, 2013, 26, 835-841.	0.8	4
222	An analytical and numerical study of peristaltic transport of a Johnsonâ€"Segalman fluid in an endoscope. Chinese Physics B, 2013, 22, 014703.	0.7	14
223	Numerical Study of Boundary Layer Flow and Heat Transfer of Oldroyd-B Nanofluid towards a Stretching Sheet. PLoS ONE, 2013, 8, e69811.	1.1	84
224	Mixed Convective Magnetohydrodynamic Peristaltic Flow of a Jeffrey Nanofluid with Newtonian Heating. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2013, 68, 433-441.	0.7	35
225	Influence of heat transfer on the nonorthogonal stagnation point flow of a thirdâ€order fluid towards a stretching surface. Heat Transfer - Asian Research, 2013, 42, 319-334.	2.8	2
226	MHD EYRING–PRANDTL FLUID FLOW WITH CONVECTIVE BOUNDARY CONDITIONS IN SMALL INTESTINES. International Journal of Biomathematics, 2013, 06, 1350034.	1.5	47
227	Numerical Simulation of Nanoparticle Fraction for the Peristaltic Flow of a Six Constant Jeffrey's Fluid Model. Current Nanoscience, 2013, 9, 798-803.	0.7	3
228	SERIES SOLUTIONS FOR UNSTEADY STAGNATION POINT FLOWS OF A NON-NEWTONIAN FLUID OVER A SHRINKING SHEET. Composites: Mechanics, Computations, Applications, 2013, 4, 303-318.	0.2	0
229	Analytical and Numerical Analysis of Vogel's Model of Viscosity on the Peristaltic Flow of Jeffrey Fluid. Journal of Aerospace Engineering, 2012, 25, 64-70.	0.8	13
230	HEAT TRANSFER ANALYSIS FOR THE PERISTALTIC FLOW OF CHYME IN SMALL INTESTINE: A THEORETICAL STUDY. Journal of Mechanics in Medicine and Biology, 2012, 12, 1250035.	0.3	4
231	Effects of heat and chemical reaction on Jeffrey fluid model with stenosis. Applicable Analysis, 2012, 91, 1631-1647.	0.6	9
232	Peristaltic flow of a Prandtl fluid model in an asymmetric channel. International Journal of Physical Sciences, 2012, 7, .	0.1	2
233	Peristaltic flow of a Tangent hyperbolic fluid in an inclined asymmetric channel with slip and heat transfer. Progress in Computational Fluid Dynamics, 2012, 12, 363.	0.1	20
234	Simulation of Variable Viscosity and Jeffrey Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis. Communications in Theoretical Physics, 2012, 57, 133-140.	1,1	31

#	Article	IF	Citations
235	Simulation of thermal and velocity slip on the peristaltic flow of a Johnson–Segalman fluid in an inclined asymmetric channel. International Journal of Heat and Mass Transfer, 2012, 55, 5495-5502.	2.5	15
236	Numerical and analytical simulation of the peristaltic flow of Jeffrey fluid with Reynold's model of viscosity. International Journal of Numerical Methods for Heat and Fluid Flow, 2012, 22, 458-472.	1.6	16
237	Simulation of heating scheme and chemical reactions on the peristaltic flow of an Eyringâ€Powell fluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2012, 22, 764-776.	1.6	10
238	PERISTALTIC FLOW OF REINER-RIVLIN FLUID IN AN ENDOSCOPE. Composites: Mechanics, Computations, Applications, 2012, 3, 63-77.	0.2	1
239	Peristaltic flow of a Jeffreyâ€six constant fluid in a uniform inclined tube. International Journal for Numerical Methods in Fluids, 2012, 69, 1550-1565.	0.9	0
240	Peristaltic flow of a nanofluid with slip effects. Meccanica, 2012, 47, 1283-1294.	1.2	86
241	Characteristics of heating scheme and mass transfer on the peristaltic flow for an Eyring–Powell fluid in an endoscope. International Journal of Heat and Mass Transfer, 2012, 55, 375-383.	2.5	69
242	Peristaltic flow of a Williamson fluid in an inclined asymmetric channel with partial slip and heat transfer. International Journal of Heat and Mass Transfer, 2012, 55, 1855-1862.	2.5	70
243	Thermal and velocity slip effects on the peristaltic flow of a six constant Jeffrey's fluid model. International Journal of Heat and Mass Transfer, 2012, 55, 3964-3970.	2.5	35
244	Peristaltic flow of a Phanâ€Thienâ€Tanner nanofluid in a diverging tube. Heat Transfer - Asian Research, 2012, 41, 10-22.	2.8	48
245	Endoscopic and heat transfer effects on the peristaltic flow of a thirdâ€order fluid with chemical reactions. Asia-Pacific Journal of Chemical Engineering, 2012, 7, 45-54.	0.8	6
246	Peristaltic flow of a nanofluid in a non-uniform tube. Heat and Mass Transfer, 2012, 48, 451-459.	1.2	83
247	Influence of Heat and Mass Transfer on Newtonian Biomagnetic Fluid of Blood Flow Through a Tapered Porous Arteries with a Stenosis. Transport in Porous Media, 2012, 91, 81-100.	1.2	18
248	Effects of heat and mass transfer peristaltic flow ofÂWilliamson fluid in a vertical annulus. Meccanica, 2012, 47, 141-151.	1.2	11
249	Endoscopic effects on the peristaltic flow of an Eyring–Powell fluid. Meccanica, 2012, 47, 687-697.	1.2	19
250	INFLUENCE OF HEAT AND CHEMICAL REACTIONS ON HYPERBOLIC TANGENT FLUID MODEL FOR BLOOD FLOW THROUGH A TAPERED ARTERY WITH A STENOSIS. Heat Transfer Research, 2012, 43, 69-94.	0.9	8
251	Peristaltic flow of a Sisko fluid in an endoscope: analytical and numerical solutions. International Journal of Computer Mathematics, 2011, 88, 1013-1023.	1.0	16
252	Endoscopic Effects on Peristaltic Flow of a Nanofluid. Communications in Theoretical Physics, 2011, 56, 761-768.	1.1	140

#	Article	IF	CITATIONS
253	ANALYTICAL AND NUMERICAL SOLUTIONS OF PERISTALTIC FLOW OF WILLIAMSON FLUID MODEL IN AN ENDOSCOPE. Journal of Mechanics in Medicine and Biology, 2011, 11, 941-957.	0.3	8
254	Numerical Analysis of Peristaltic Transport of a Tangent Hyperbolic Fluid in an Endoscope. Journal of Aerospace Engineering, 2011, 24, 309-317.	0.8	6
255	JEFFREY FLUID MODEL FOR BLOOD FLOW THROUGH A TAPERED ARTERY WITH A STENOSIS. Journal of Mechanics in Medicine and Biology, 2011, 11, 529-545.	0.3	61
256	Peristaltic flow of Walter's B fluid in endoscope. Applied Mathematics and Mechanics (English) Tj ETQq0 0 0 r	rgBT/Over	lock 10 Tf 5
257	Influence of heat and chemical reactions on Walter's B fluid model for blood flow through a tapered artery. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 67-75.	2.7	45
258	Power law fluid model for blood flow through a tapered artery with a stenosis. Applied Mathematics and Computation, 2011, 217, 7108-7116.	1.4	65
259	Numerical solutions of peristaltic flow of Williamson fluid with radially varying MHD in an endoscope. International Journal for Numerical Methods in Fluids, 2011, 66, 212-220.	0.9	40
260	Exact and numerical simulation of peristaltic flow of a nonâ€Newtonian fluid with inclined magnetic field in an endoscope. International Journal for Numerical Methods in Fluids, 2011, 66, 919-934.	0.9	15
261	Combined effects of heat and chemical reactions on the peristaltic flow of carreau fluid model in a diverging tube. International Journal for Numerical Methods in Fluids, 2011, 67, 1818-1832.	0.9	14
262	Effects of heat and chemical reactions on peristaltic flow of Newtonian fluid in a diverging tube with inclined MHD. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 659-668.	0.8	11
263	Simulation of heat transfer on the peristaltic flow of a Jeffrey-six constant fluid in a diverging tube. International Communications in Heat and Mass Transfer, 2011, 38, 154-159.	2.9	13
264	Effects of slip and heat transfer on the peristaltic flow of a third order fluid in an inclined asymmetric channel. International Journal of Heat and Mass Transfer, 2011, 54, 1654-1664.	2.5	36
265	Effects of heat and mass transfer on the peristaltic flow of hyperbolic tangent fluid in an annulus. International Journal of Heat and Mass Transfer, 2011, 54, 4360-4369.	2.5	39
266	Influence of heat and mass transfer on the peristaltic flow of a Johnson Segalman fluid in a vertical asymmetric channel with induced MHD. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 58-66.	2.7	56
267	THE NUMERICAL AND ANALYTICAL SOLUTION OF PERISTALTIC FLOW OF A JEFFREY FLUID IN AN INCLINED TUBE WITH PARTIAL SLIP. Journal of Mechanics in Medicine and Biology, 2011, 11, 773-802.	0.3	12
268	Numerical and series solutions of the peristaltic motion of an Oldroyd 8-constant fluid in an endoscope. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 987-993.	0.9	5
269	SERIES SOLUTIONS FOR THE STAGNATION FLOW OF A MAXWELL FLUID OVER A SHRINKING SHEET. Composites: Mechanics, Computations, Applications, 2011, 2, 297-311.	0.2	2
270	INFLUENCE OF HEAT TRANSFER AND VARIABLE VISCOSITY IN VERTICAL POROUS ANNULUS WITH PERISTALSIS. Journal of Porous Media, 2011, 14, 849-863.	1.0	6

#	Article	IF	Citations
271	Peristaltic transport and heat transfer of a MHD Newtonian fluid with variable viscosity. International Journal for Numerical Methods in Fluids, 2010, 63, 1375-1393.	0.9	17
272	Exact and numerical solutions of a micropolar fluid in a vertical annulus. Numerical Methods for Partial Differential Equations, 2010, 26, 1660-1674.	2.0	6
273	Influence of heat and mass transfer on a peristaltic motion of a Jeffrey-six constant fluid in an annulus. Heat and Mass Transfer, 2010, 46, 485-493.	1.2	33
274	Simulation of heat and chemical reactions on Reiner Rivlin fluid model for blood flow through a tapered artery with a stenosis. Heat and Mass Transfer, 2010, 46, 531-539.	1.2	48
275	Influence of heat transfer on peristaltic transport of a Johnson–Segalman fluid in an inclined asymmetric channel. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 2860-2877.	1.7	32
276	Influence of radially varying MHD on the peristaltic flow in an annulus with heat and mass transfer. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41, 286-294.	2.7	75
277	Peristaltic flow of Sisko fluid in a uniform inclined tube. Acta Mechanica Sinica/Lixue Xuebao, 2010, 26, 675-683.	1.5	47
278	Effects of induced magnetic field on peristaltic flow of Johnson-Segalman fluid in a vertical symmetric channel. Applied Mathematics and Mechanics (English Edition), 2010, 31, 969-978.	1.9	21
279	Peristaltic flow of Walter's B fluid in a uniform inclined tube. Journal of Biorheology, 2010, 24, 22-28.	0.2	20
280	Application of radially varying magnetic field on a peristaltic flow of nonâ€Newtonian fluid in the presence of heat and mass transfer. Heat Transfer - Asian Research, 2010, 39, 555-574.	2.8	2
281	Influence of temperature dependent viscosity on peristaltic transport of a Newtonian fluid: Application of an endoscope. Applied Mathematics and Computation, 2010, 216, 3606-3619.	1.4	32
282	Influence of heat and mass transfer on peristaltic flow of a third order fluid in a diverging tube. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 2916-2931.	1.7	72
283	Effects of temperature dependent viscosity on peristaltic flow of a Jeffrey-six constant fluid in a non-uniform vertical tube. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 3950-3964.	1.7	42
284	Effects of Variable Viscosity on the Peristaltic Motion in a Third-Order Fluid. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 901-918.	0.7	1
285	Series Solutions for the Peristaltic Flow of a Tangent Hyperbolic Fluid in a Uniform Inclined Tube. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 887-895.	0.7	27
286	Simulation of the Second Grade Fluid Model for Blood Flow through a Tapered Artery with a Stenosis. Chinese Physics Letters, 2010, 27, 068701.	1.3	19
287	Effects of Heat and Mass Transfer on Peristaltic Flow of Carreau Fluid in a Vertical Annulus. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 781-792.	0.7	20
288	Numerical Solutions of Peristaltic Flow of a Newtonian Fluid under the Effects of Magnetic Field and Heat Transfer in a Porous Concentric Tubes. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 369-380.	0.7	12

#	Article	IF	CITATIONS
289	Peristaltic Flow of a Jeffrey Fluid with Variable Viscosity in an Asymmetric Channel. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 713-722.	0.7	70
290	Effects of heat transfer on the peristaltic transport of MHD Newtonian fluid with variable viscosity: Application of Adomian decomposition method. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 3844-3855.	1.7	126
291	On the influence of heat transfer in peristalsis with variable viscosity. International Journal of Heat and Mass Transfer, 2009, 52, 4722-4730.	2.5	97
292	Influence of heat transfer on a peristaltic flow of Johnson Segalman fluid in a non uniform tube. International Communications in Heat and Mass Transfer, 2009, 36, 1050-1059.	2.9	61
293	Influence of heat transfer on a peristaltic transport of Herschel–Bulkley fluid in a non-uniform inclined tube. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 4100-4113.	1.7	95
294	Transient Magneto-Squeezing Flow of NaCl-CNP Nanofluid over a Sensor Surface Inspired by Temperature Dependent Viscosity. Defect and Diffusion Forum, 0, 387, 600-614.	0.4	8
295	Effect of the Hall currents and thermal radiation on the flow of a nanofluid through a vertical rotating channel. Mathematical Methods in the Applied Sciences, 0, , .	1.2	2