
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9350632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. AEJ - Alexandria Engineering Journal, 2013, 52, 577-582.	3.4	267
2	Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet. Journal of Magnetism and Magnetic Materials, 2015, 382, 355-358.	1.0	210
3	Numerical solutions of Magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian Journal of Physics, 2013, 87, 1121-1124.	0.9	188
4	Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 65, 17-23.	1.3	180
5	A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube. Advanced Powder Technology, 2016, 27, 2175-2185.	2.0	169
6	Influence of induced magnetic field and heat flux with the suspension of carbon nanotubes for the peristaltic flow in a permeable channel. Journal of Magnetism and Magnetic Materials, 2015, 381, 405-415.	1.0	156
7	Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition. Chinese Journal of Aeronautics, 2013, 26, 1389-1397.	2.8	149
8	3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Technology, 2017, 315, 205-215.	2.1	147
9	MHD Three-Dimensional Boundary Layer Flow of Casson Nanofluid Past a Linearly Stretching Sheet With Convective Boundary Condition. IEEE Nanotechnology Magazine, 2014, 13, 109-115.	1.1	144
10	Endoscopic Effects on Peristaltic Flow of a Nanofluid. Communications in Theoretical Physics, 2011, 56, 761-768.	1.1	140
11	Effects of heat transfer on the peristaltic transport of MHD Newtonian fluid with variable viscosity: Application of Adomian decomposition method. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 3844-3855.	1.7	126
12	Optimized analytical solution for oblique flow of a Casson-nano fluid with convective boundary conditions. International Journal of Thermal Sciences, 2014, 78, 90-100.	2.6	121
13	The combined effects of slip and convective boundary conditions on stagnation-point flow of CNT suspended nanofluid over a stretching sheet. Journal of Molecular Liquids, 2014, 196, 21-25.	2.3	113
14	Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: Application in crude oil refinement. Journal of Magnetism and Magnetic Materials, 2015, 378, 463-468.	1.0	109
15	Non-orthogonal stagnation point flow of a nano non-Newtonian fluid towards a stretching surface with heat transfer. International Journal of Heat and Mass Transfer, 2013, 57, 679-689.	2.5	105
16	Interaction of nanoparticles for the peristaltic flow in an asymmetric channel with the induced magnetic field. European Physical Journal Plus, 2014, 129, 1.	1.2	99
17	On the influence of heat transfer in peristalsis with variable viscosity. International Journal of Heat and Mass Transfer, 2009, 52, 4722-4730.	2.5	97
18	MHD stagnation point flow of Carreau fluid toward a permeable shrinking sheet: Dual solutions. Ain Shams Engineering Journal, 2014, 5, 1233-1239.	3.5	96

#	Article	IF	CITATIONS
19	Influence of heat transfer on a peristaltic transport of Herschel–Bulkley fluid in a non-uniform inclined tube. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 4100-4113.	1.7	95
20	Performance of hybrid nanofluid (Cu-CuO/water) on MHD rotating transport in oscillating vertical channel inspired by Hall current and thermal radiation. AEJ - Alexandria Engineering Journal, 2018, 57, 1943-1954.	3.4	94
21	A numerical study of magnetohydrodynamic transport of nanofluids over a vertical stretching sheet with exponential temperature-dependent viscosity and buoyancy effects. Chemical Physics Letters, 2016, 661, 20-30.	1.2	88
22	Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 49-58.	2.7	87
23	Peristaltic flow of a nanofluid with slip effects. Meccanica, 2012, 47, 1283-1294.	1.2	86
24	Carreau fluid model for blood flow through a tapered artery with a stenosis. Ain Shams Engineering Journal, 2014, 5, 1307-1316.	3.5	85
25	Numerical Study of Boundary Layer Flow and Heat Transfer of Oldroyd-B Nanofluid towards a Stretching Sheet. PLoS ONE, 2013, 8, e69811.	1.1	84
26	Peristaltic flow of a nanofluid in a non-uniform tube. Heat and Mass Transfer, 2012, 48, 451-459.	1.2	83
27	Blood flow of nanofluid through an artery with composite stenosis and permeable walls. Applied Nanoscience (Switzerland), 2014, 4, 919-926.	1.6	77
28	Numerical simulation of peristaltic flow of a Carreau nanofluid in an asymmetric channel. AEJ - Alexandria Engineering Journal, 2014, 53, 191-197.	3.4	76
29	Influence of radially varying MHD on the peristaltic flow in an annulus with heat and mass transfer. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41, 286-294.	2.7	75
30	Copper oxide nanoparticles analysis with water as base fluid for peristaltic flow in permeable tube with heat transfer. Computer Methods and Programs in Biomedicine, 2016, 130, 22-30.	2.6	75
31	Influence of heat and mass transfer on peristaltic flow of a third order fluid in a diverging tube. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 2916-2931.	1.7	72
32	STUDY OF PERISTALTIC FLOW OF NANOFLUID WITH ENTROPY GENERATION IN A POROUS MEDIUM. Journal of Porous Media, 2017, 20, 461-478.	1.0	72
33	Effect of variable thermal conductivity and thermal radiation with CNTS suspended nanofluid over a stretching sheet with convective slip boundary conditions: Numerical study. Journal of Molecular Liquids, 2016, 222, 279-286.	2.3	71
34	Peristaltic Flow of a Jeffrey Fluid with Variable Viscosity in an Asymmetric Channel. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 713-722.	0.7	70
35	Peristaltic flow of a Williamson fluid in an inclined asymmetric channel with partial slip and heat transfer. International Journal of Heat and Mass Transfer, 2012, 55, 1855-1862.	2.5	70
36	Characteristics of heating scheme and mass transfer on the peristaltic flow for an Eyring–Powell fluid in an endoscope. International Journal of Heat and Mass Transfer, 2012, 55, 375-383.	2.5	69

#	Article	IF	CITATIONS
37	MHD dissipative flow and heat transfer of Casson fluids due to metachronal wave propulsion of beating cilia with thermal and velocity slip effects under an oblique magnetic field. Acta Astronautica, 2016, 128, 1-12.	1.7	68
38	Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field. Energy, 2015, 82, 23-30.	4.5	66
39	Power law fluid model for blood flow through a tapered artery with a stenosis. Applied Mathematics and Computation, 2011, 217, 7108-7116.	1.4	65
40	Nano fluid flow in tapering stenosed arteries with permeable walls. International Journal of Thermal Sciences, 2014, 85, 54-61.	2.6	65
41	Magnetic field analysis in a suspension of gyrotactic microorganisms and nanoparticles over a stretching surface. Journal of Magnetism and Magnetic Materials, 2016, 410, 72-80.	1.0	65
42	Mixed convective oblique flow of a Casson fluid with partial slip, internal heating and homogeneous–heterogeneous reactions. Journal of Molecular Liquids, 2016, 222, 1010-1019.	2.3	63
43	MHD 3D free convective flow of nanofluid over an exponentially stretching sheet with chemical reaction. Advanced Powder Technology, 2017, 28, 2159-2166.	2.0	62
44	Influence of heat transfer on a peristaltic flow of Johnson Segalman fluid in a non uniform tube. International Communications in Heat and Mass Transfer, 2009, 36, 1050-1059.	2.9	61
45	JEFFREY FLUID MODEL FOR BLOOD FLOW THROUGH A TAPERED ARTERY WITH A STENOSIS. Journal of Mechanics in Medicine and Biology, 2011, 11, 529-545.	0.3	61
46	Metachronal beating of cilia under the influence of Casson fluid and magnetic field. Journal of Magnetism and Magnetic Materials, 2015, 378, 320-326.	1.0	61
47	Numerical study of Williamson nano fluid flow in an asymmetric channel. Results in Physics, 2013, 3, 161-166.	2.0	58
48	Dual solutions in MHD stagnation-point flow of Prandtl fluid impinging on shrinking sheet. Applied Mathematics and Mechanics (English Edition), 2014, 35, 813-820.	1.9	58
49	Peristaltic flow with thermal conductivity of H 2 O + Cu nanofluid and entropy generation. Results in Physics, 2015, 5, 115-124.	2.0	57
50	Influence of heat and mass transfer on the peristaltic flow of a Johnson Segalman fluid in a vertical asymmetric channel with induced MHD. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 58-66.	2.7	56
51	Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: A Sutterby fluid model. Microvascular Research, 2020, 132, 104062.	1.1	55
52	Metallic Nanoparticles Analysis for the Peristaltic Flow in an Asymmetric Channel With MHD. IEEE Nanotechnology Magazine, 2014, 13, 357-361.	1.1	53
53	Combined effects of magnetic field and partial slip on obliquely striking rheological fluid over a stretching surface. Journal of Magnetism and Magnetic Materials, 2015, 378, 457-462.	1.0	52
54	Simulation of heat and chemical reactions on Reiner Rivlin fluid model for blood flow through a tapered artery with a stenosis. Heat and Mass Transfer, 2010, 46, 531-539.	1.2	48

#	Article	IF	CITATIONS
55	Peristaltic flow of a Phanâ€Thienâ€Tanner nanofluid in a diverging tube. Heat Transfer - Asian Research, 2012, 41, 10-22.	2.8	48
56	Peristaltic flow of Sisko fluid in a uniform inclined tube. Acta Mechanica Sinica/Lixue Xuebao, 2010, 26, 675-683.	1.5	47
57	Characteristics of Jeffrey fluid model for peristaltic flow of chyme in small intestine with magnetic field. Results in Physics, 2013, 3, 152-160.	2.0	47
58	MHD EYRING–PRANDTL FLUID FLOW WITH CONVECTIVE BOUNDARY CONDITIONS IN SMALL INTESTINES. International Journal of Biomathematics, 2013, 06, 1350034.	1.5	47
59	Three dimensional MHD flow of nanofluid over an exponential porous stretching sheet with convective boundary conditions. Thermal Science and Engineering Progress, 2017, 3, 133-140.	1.3	46
60	A comparative study on the role of nanoparticle dispersion in electroosmosis regulated peristaltic flow of water. AEJ - Alexandria Engineering Journal, 2020, 59, 943-956.	3.4	46
61	A Theoretical Investigation on the Heat Transfer Ability of Water-Based Hybrid (Ag–Au) Nanofluids and Ag Nanofluids Flow Driven by Electroosmotic Pumping Through a Microchannel. Arabian Journal for Science and Engineering, 2021, 46, 2911-2927.	1.7	46
62	Analysis of electroosmotic flow of silver-water nanofluid regulated by peristalsis using two different approaches for nanofluid. Journal of Computational Science, 2022, 62, 101696.	1.5	46
63	Influence of heat and chemical reactions on Walter's B fluid model for blood flow through a tapered artery. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 67-75.	2.7	45
64	Magnetic field effects for copper suspended nanofluid venture through a composite stenosed arteries with permeable wall. Journal of Magnetism and Magnetic Materials, 2015, 381, 285-291.	1.0	45
65	Effects of heat and mass transfer on peristaltic flow of a nanofluid between eccentric cylinders. Applied Nanoscience (Switzerland), 2014, 4, 393-404.	1.6	44
66	Electroosmotically modulated peristaltic propulsion of TiO2/10W40 nanofluid in curved microchannel. International Communications in Heat and Mass Transfer, 2022, 136, 106208.	2.9	44
67	Oblique Stagnation Point Flow of a Casson-Nano Fluid Towards a Stretching Surface with Heat Transfer. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1422-1432.	0.4	43
68	Influence of magnetic field for metachoronical beating of cilia for nanofluid with Newtonian heating. Journal of Magnetism and Magnetic Materials, 2015, 381, 235-242.	1.0	43
69	Effects of temperature dependent viscosity on peristaltic flow of a Jeffrey-six constant fluid in a non-uniform vertical tube. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 3950-3964.	1.7	42
70	Influence of heat generation and heat flux on peristaltic flow with interacting nanoparticles. European Physical Journal Plus, 2014, 129, 1.	1.2	42
71	Entropy Generation Analysis for a CNT Suspension Nanofluid in Plumb Ducts with Peristalsis. Entropy, 2015, 17, 1411-1424.	1.1	41
72	Numerical solutions of peristaltic flow of Williamson fluid with radially varying MHD in an endoscope. International Journal for Numerical Methods in Fluids, 2011, 66, 212-220.	0.9	40

#	Article	IF	CITATIONS
73	Investigation of peristaltic flow of Williamson nanofluid in a curved channel with compliant walls. Applied Nanoscience (Switzerland), 2014, 4, 511-521.	1.6	40
74	Impulsion of induced magnetic field for Brownian motion of nanoparticles in peristalsis. Applied Nanoscience (Switzerland), 2016, 6, 359-370.	1.6	40
75	Framing the MHD mixed convective performance of CNTs in rotating vertical channel inspired by thermal deposition: Closed form solutions. Journal of Molecular Liquids, 2017, 233, 334-343.	2.3	40
76	Effects of Thermal-Diffusion and Diffusion-Thermo on Oblique Stagnation Point Flow of Couple Stress Casson Fluid Over a Stretched Horizontal Riga Plate with Higher Order Chemical Reaction. Journal of Nanofluids, 2019, 8, 94-102.	1.4	40
77	Effects of heat and mass transfer on the peristaltic flow of hyperbolic tangent fluid in an annulus. International Journal of Heat and Mass Transfer, 2011, 54, 4360-4369.	2.5	39
78	Ferromagnetic effects for peristaltic flow of Cu–water nanofluid for different shapes of nanosize particles. Applied Nanoscience (Switzerland), 2016, 6, 379-385.	1.6	39
79	Mathematical modelling of pressure-driven micropolar biological flow due to metachronal wave propulsion of beating cilia. Mathematical Biosciences, 2018, 301, 121-128.	0.9	39
80	CNT suspended nanofluid analysis in a flexible tube with ciliated walls. European Physical Journal Plus, 2014, 129, 1.	1.2	38
81	Nanoparticle analysis for blood flow of Prandtl fluid model with stenosis. International Nano Letters, 2013, 3, 1.	2.3	37
82	Nano Sutterby Fluid Model for the Peristaltic Flow in Small Intestines. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2491-2499.	0.4	37
83	Influence of Heat and Mass Transfer on Micropolar Fluid of Blood Flow Through a Tapered Stenosed Arteries with Permeable Walls. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1156-1163.	0.4	37
84	Bioconvection peristaltic flow in an asymmetric channel filled by nanofluid containing gyrotactic microorganism. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 214-224.	1.6	37
85	Effects of slip and heat transfer on the peristaltic flow of a third order fluid in an inclined asymmetric channel. International Journal of Heat and Mass Transfer, 2011, 54, 1654-1664.	2.5	36
86	Mathematical model for ciliary-induced transport in MHD flow of Cu-H 2 O nanofluids with magnetic induction. Chinese Journal of Physics, 2017, 55, 947-962.	2.0	36
87	Thermal and velocity slip effects on the peristaltic flow of a six constant Jeffrey's fluid model. International Journal of Heat and Mass Transfer, 2012, 55, 3964-3970.	2.5	35
88	Mixed Convective Magnetohydrodynamic Peristaltic Flow of a Jeffrey Nanofluid with Newtonian Heating. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2013, 68, 433-441.	0.7	35
89	Electroosmosis augmented MHD peristaltic transport of SWCNTs suspension in aqueous media. Journal of Thermal Analysis and Calorimetry, 2022, 147, 2509-2526.	2.0	35
90	Influence of heat and mass transfer on a peristaltic motion of a Jeffrey-six constant fluid in an annulus. Heat and Mass Transfer, 2010, 46, 485-493.	1.2	33

#	Article	IF	CITATIONS
91	Series solution of unsteady peristaltic flow of a Carreau fluid in eccentric cylinders. Ain Shams Engineering Journal, 2014, 5, 293-304.	3.5	33
92	Thermal and velocity slip effects on the MHD peristaltic flow with carbon nanotubes in an asymmetric channel: application of radiation therapy. Applied Nanoscience (Switzerland), 2014, 4, 849-857.	1.6	33
93	Blood flow analysis of Prandtl fluid model in tapered stenosed arteries. Ain Shams Engineering Journal, 2014, 5, 1267-1275.	3.5	33
94	MODELING NANOPARTICLE GEOMETRY EFFECTS ON PERISTALTIC PUMPING OF MEDICAL MAGNETOHYDRODYNAMIC NANOFLUIDS WITH HEAT TRANSFER. Journal of Mechanics in Medicine and Biology, 2016, 16, 1650088.	0.3	33
95	MHD convective heat transfer of nanofluids through a flexible tube with buoyancy: A study of nano-particle shape effects. Advanced Powder Technology, 2017, 28, 453-462.	2.0	33
96	Influence of heat transfer on peristaltic transport of a Johnson–Segalman fluid in an inclined asymmetric channel. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 2860-2877.	1.7	32
97	Influence of temperature dependent viscosity on peristaltic transport of a Newtonian fluid: Application of an endoscope. Applied Mathematics and Computation, 2010, 216, 3606-3619.	1.4	32
98	Effects of single and multi-walled carbon nano tubes on water and engine oil based rotating fluids with internal heating. Advanced Powder Technology, 2017, 28, 1991-2002.	2.0	32
99	Non-aligned stagnation point flow of radiating Casson fluid over a stretching surface. AEJ - Alexandria Engineering Journal, 2018, 57, 939-946.	3.4	32
100	Simulation of Variable Viscosity and Jeffrey Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis. Communications in Theoretical Physics, 2012, 57, 133-140.	1.1	31
101	Analytical approach to entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium. Journal of Hydrodynamics, 2018, 30, 296-306.	1.3	31
102	Nanoparticles shape effects on peristaltic transport of nanofluids in presence of magnetohydrodynamics. Microsystem Technologies, 2019, 25, 283-294.	1.2	31
103	Simulation of peristaltic flow of chyme in small intestine for couple stress fluid. Meccanica, 2014, 49, 325-334.	1.2	30
104	Heat transfer analysis of peristaltic flow of a Phan-Thien–Tanner fluid model due to metachronal wave of cilia. Biomechanics and Modeling in Mechanobiology, 2020, 19, 1925-1933.	1.4	30
105	Chemical reaction and heat source/sink effect on magnetonano Prandtl-Eyring fluid peristaltic propulsion in an inclined symmetric channel. Chinese Journal of Physics, 2020, 65, 300-313.	2.0	30
106	Peristaltic Sisko nano fluid in an asymmetric channel. Applied Nanoscience (Switzerland), 2014, 4, 663-673.	1.6	29
107	Mathematical model for the peristaltic flow of Jeffrey fluid with nanoparticles phenomenon through a rectangular duct. Applied Nanoscience (Switzerland), 2014, 4, 613-624.	1.6	29
108	Thermal Analysis on MHD Flow of Ethylene Glycol-based BNNTs Nanofluids via Peristaltically Induced Electroosmotic Pumping in a Curved Microchannel. Arabian Journal for Science and Engineering, 2022, 47, 7487-7503.	1.7	29

#	Article	IF	CITATIONS
109	Free Convective MHD Peristaltic Flow of a Jeffrey Nanofluid with Convective Surface Boundary Condition: A BiomedicineNano Model. Current Nanoscience, 2014, 10, 432-440.	0.7	29
110	DOUBLE-DIFFUSIVE NATURAL CONVECTIVE PERISTALTIC FLOW OF A JEFFREY NANOFLUID IN A POROUS CHANNEL. Heat Transfer Research, 2014, 45, 293-307.	0.9	28
111	Metachronal beating of cilia under influence of Hartmann layer and heat transfer. European Physical Journal Plus, 2014, 129, 1.	1.2	28
112	Ferromagnetic effects for nanofluid venture through composite permeable stenosed arteries with different nanosize particles. AIP Advances, 2015, 5, .	0.6	28
113	Series Solutions for the Peristaltic Flow of a Tangent Hyperbolic Fluid in a Uniform Inclined Tube. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 887-895.	0.7	27
114	Peristaltic flow of a tangent hyperbolic fluid with convective boundary condition. European Physical Journal Plus, 2014, 129, 1.	1.2	27
115	Exact solution of peristaltic flow of biviscosity fluid in an endoscope: A note. AEJ - Alexandria Engineering Journal, 2014, 53, 449-454.	3.4	27
116	Oblique stagnation flow of Jeffery fluid over a stretching convective surface. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 454-471.	1.6	27
117	Mechanistic investigation for shape factor analysis of SiO ₂ /MoS ₂ – ethylene glycol inside a vertical channel influenced by oscillatory temperature gradient. Canadian Journal of Physics, 2019, 97, 950-958.	0.4	27
118	Exact solutions of an unsteady thermal conductive pressure driven peristaltic transport with temperature-dependent nanofluid viscosity. Case Studies in Thermal Engineering, 2022, 35, 102124.	2.8	27
119	MHD Peristaltic Flow with Carbon Nanotubes in an Asymmetric Channel. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1323-1329.	0.4	26
120	Copper nanoparticles impinging on a curved channel with compliant walls and peristalsis. European Physical Journal Plus, 2014, 129, 1.	1.2	26
121	Physiological Transportation of Casson Fluid in a Plumb Duct. Communications in Theoretical Physics, 2015, 63, 347-352.	1.1	26
122	Application of Eyring-Powell Fluid Model in Peristalsis with Nano Particles. Journal of Computational and Theoretical Nanoscience, 2015, 12, 94-100.	0.4	26
123	Ferromagnetic CNT suspended H2O+Cu nanofluid analysis through composite stenosed arteries with permeable wall. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 72, 70-76.	1.3	26
124	Carbon nanotubes analysis for the peristaltic flow in curved channel with heat transfer. Applied Mathematics and Computation, 2015, 259, 231-241.	1.4	26
125	Effects of nanoparticles on the peristaltic motion of tangent hyperbolic fluid model in an annulus. AEJ - Alexandria Engineering Journal, 2015, 54, 843-851.	3.4	26
126	Transient peristaltic diffusion of nanofluids: A model of micropumps in medical engineering. Journal of Hydrodynamics, 2018, 30, 1001-1011.	1.3	26

#	Article	IF	CITATIONS
127	Numerical study of the electroosmotic flow of Al2O3–CH3OH Sisko nanofluid through a tapered microchannel in a porous environment. Applied Nanoscience (Switzerland), 2020, 10, 4161-4176.	1.6	26
128	The influence of wall flexibility on unsteady peristaltic flow of Prandtl fluid in a three dimensional rectangular duct. Applied Mathematics and Computation, 2014, 241, 389-400.	1.4	25
129	Endoscopic Effects on the Peristaltic Flow of Cu-Water Nanofluid. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1150-1155.	0.4	25
130	Heat transfer analysis of Rabinowitsch fluid flow due to metachronal wave of cilia. Results in Physics, 2015, 5, 92-98.	2.0	25
131	Non-Aligned Ethylene-Glycol 30% Based Stagnation Point Fluid over a Stretching Surface with Hematite Nano Particles. Journal of Applied Fluid Mechanics, 2016, 9, 1359-1366.	0.4	25
132	Non-orthogonal stagnation point flow of a micropolar second grade fluid towards a stretching surface with heat transfer. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 586-595.	2.7	24
133	Free Convective Nonaligned Non-Newtonian Flow with Non-linear Thermal Radiation. Communications in Theoretical Physics, 2016, 66, 687-693.	1.1	24
134	Numerical simulation of the forced convective nanofluid flow through an annulus sector duct. Chinese Journal of Physics, 2017, 55, 1400-1411.	2.0	24
135	Dynamics of variable-viscosity nanofluid flow with heat transfer in a flexible vertical tube under propagating waves. Results in Physics, 2017, 7, 413-425.	2.0	24
136	Nanoparticle Analysis for Non-Orthogonal Stagnation Point Flow of a Third Order Fluid Towards a Stretching Surface. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2737-2747.	0.4	23
137	Heat transfer analysis of viscoelastic fluid flow due to metachronal wave of cilia. International Journal of Biomathematics, 2014, 07, 1450066.	1.5	23
138	Peristaltic Flow with Maxwell Carbon Nanotubes Suspensions. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1642-1648.	0.4	23
139	Bio mathematical venture for the metallic nanoparticles due to ciliary motion. Computer Methods and Programs in Biomedicine, 2016, 134, 43-51.	2.6	23
140	Nanoparticle shapes effects on unsteady physiological transport of nanofluids through a finite length non-uniform channel. Results in Physics, 2017, 7, 2477-2484.	2.0	23
141	Biological analysis of Carreau nanofluid in an endoscope with variable viscosity. Physica Scripta, 2020, 95, 055201.	1.2	23
142	Heat Transfer Analysis on Transport of Copper Nanofluids Due to Metachronal Waves of Cilia. Current Nanoscience, 2014, 10, 807-815.	0.7	23
143	Heat transfer and carbon nano tubes analysis for the peristaltic flow in a diverging tube. Meccanica, 2015, 50, 39-47.	1.2	22
144	Metallic nanoparticles analysis for the blood flow in tapered stenosed arteries: Application in nanomedicines. International Journal of Biomathematics, 2016, 09, 1650002.	1.5	22

#	Article	IF	CITATIONS
145	New trends of nanofluids to combat Staphylococcus aureus in clinical isolates. Journal of Thermal Analysis and Calorimetry, 2021, 143, 1893-1899.	2.0	22
146	Effects of induced magnetic field on peristaltic flow of Johnson-Segalman fluid in a vertical symmetric channel. Applied Mathematics and Mechanics (English Edition), 2010, 31, 969-978.	1.9	21
147	Biofluidics Study in Digestive System with Thermal Conductivity of Shape Nanosize H2O+Cu Nanoparticles. Journal of Bionic Engineering, 2015, 12, 656-663.	2.7	21
148	Peristaltic flow of Walter's B fluid in a uniform inclined tube. Journal of Biorheology, 2010, 24, 22-28.	0.2	20
149	Effects of Heat and Mass Transfer on Peristaltic Flow of Carreau Fluid in a Vertical Annulus. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 781-792.	0.7	20
150	Peristaltic flow of a Tangent hyperbolic fluid in an inclined asymmetric channel with slip and heat transfer. Progress in Computational Fluid Dynamics, 2012, 12, 363.	0.1	20
151	Intestinal Flow of a Couple Stress Nanofluid in Arteries. IEEE Transactions on Nanobioscience, 2013, 12, 332-339.	2.2	20
152	HEAT AND MASS TRANSFER EFFECTS ON CARREAU FLUID MODEL FOR BLOOD FLOW THROUGH A TAPERED ARTERY WITH A STENOSIS. International Journal of Biomathematics, 2014, 07, 1450004.	1.5	20
153	Oblique Stagnation Point Flow of Carbon Nano Tube Based Fluid Over a Convective Surface. Journal of Computational and Theoretical Nanoscience, 2015, 12, 605-612.	0.4	20
154	Biomathematical study of Sutterby fluid model for blood flow in stenosed arteries. International Journal of Biomathematics, 2015, 08, 1550075.	1.5	20
155	Rheological properties of Reiner-Rivlin fluid model for blood flow through tapered artery with stenosis. Journal of the Egyptian Mathematical Society, 2016, 24, 138-142.	0.6	20
156	Physical hydrodynamic propulsion model study on creeping viscous flow through a ciliated porous tube. Pramana - Journal of Physics, 2017, 88, 1.	0.9	20
157	Entropy generation in electroosmotically aided peristaltic pumping of MoS ₂ Rabinowitsch nanofluid. Fluid Dynamics Research, 2022, 54, 015507.	0.6	20
158	Simulation of the Second Grade Fluid Model for Blood Flow through a Tapered Artery with a Stenosis. Chinese Physics Letters, 2010, 27, 068701.	1.3	19
159	Endoscopic effects on the peristaltic flow of an Eyring–Powell fluid. Meccanica, 2012, 47, 687-697.	1.2	19
160	Nano Particle Analysis for the Steady Blood Flow of Jeffrey Fluid with Stenosis with New Analytical Techniques. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2751-2765.	0.4	19
161	Heat transfer study of an individual multiwalled carbon nanotube due to metachronal beating of cilia. International Communications in Heat and Mass Transfer, 2014, 59, 114-119.	2.9	19
162	Non-Newtonian model study for blood flow through a tapered artery with a stenosis. AEJ - Alexandria Engineering Journal, 2016, 55, 321-329.	3.4	19

#	Article	IF	CITATIONS
163	Numerical study of forced convective power law fluid flow through an annulus sector duct. European Physical Journal Plus, 2016, 131, 1.	1.2	19
164	Heat transfer analysis of CNT suspended nanofluid through annulus sector duct. International Journal of Mechanical Sciences, 2017, 122, 362-369.	3.6	19
165	Variable fluid properties analysis with water based CNT nanofluid over a sensor sheet: Numerical solution. Journal of Molecular Liquids, 2017, 232, 471-477.	2.3	19
166	Variable-viscosity thermal hemodynamic slip flow conveying nanoparticles through a permeable-walled composite stenosed artery. European Physical Journal Plus, 2017, 132, 1.	1.2	19
167	Peristaltic flow of Walter's B fluid in endoscope. Applied Mathematics and Mechanics (English) Tj ETQq1 1 0.	784314 rş 1.9	gBT ₈ Overlock
168	Influence of Heat and Mass Transfer on Newtonian Biomagnetic Fluid of Blood Flow Through a Tapered Porous Arteries with a Stenosis. Transport in Porous Media, 2012, 91, 81-100.	1.2	18
169	Entropy generation analysis for the peristaltic flow of Cu-water nanofluid in a tube with viscous dissipation. Journal of Hydrodynamics, 2017, 29, 135-143.	1.3	18
170	Peristaltic pumping with double diffusive natural convective nanofluid in a lopsided channel with accounting thermophoresis and Brownian moment. Microsystem Technologies, 2019, 25, 1217-1226.	1.2	18
171	Numerical simulation of Electrokinetically Driven Peristaltic Pumping of Silver-Water Nanofluids in an asymmetric microchannel. Chinese Journal of Physics, 2020, 68, 745-763.	2.0	18
172	Peristaltic transport and heat transfer of a MHD Newtonian fluid with variable viscosity. International Journal for Numerical Methods in Fluids, 2010, 63, 1375-1393.	0.9	17
173	Peristaltic flow of a micropolar fluid with nano particles in small intestine. Applied Nanoscience (Switzerland), 2013, 3, 461-468.	1.6	17
174	Thermo-diffusion effects on MHD oblique stagnation-point flow of a viscoelastic fluid over a convective surface. European Physical Journal Plus, 2014, 129, 1.	1.2	17
175	Peristaltic transport of bi-viscosity fluids through a curved tube: A mathematical model for intestinal flow. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2016, 230, 817-828.	1.0	17
176	Thermally developing MHD peristaltic transport of nanofluids with velocity and thermal slip effects. European Physical Journal Plus, 2016, 131, 1.	1.2	17
177	3D MHD cross flow over an exponential stretching porous surface. Heat Transfer, 2020, 49, 1256-1280.	1.7	17
178	Peristaltic flow of a Sisko fluid in an endoscope: analytical and numerical solutions. International Journal of Computer Mathematics, 2011, 88, 1013-1023.	1.0	16
179	Numerical and analytical simulation of the peristaltic flow of Jeffrey fluid with Reynold's model of viscosity. International Journal of Numerical Methods for Heat and Fluid Flow, 2012, 22, 458-472.	1.6	16
180	Nanostructures study of CNT nanofluids transport with temperature-dependent variable viscosity in a muscular tube. European Physical Journal Plus, 2017, 132, 1.	1.2	16

#	Article	IF	CITATIONS
181	Entropy Generation Analysis in Convective Ferromagnetic Nano Blood Flow Through a Composite Stenosed Arteries with Permeable Wall. Communications in Theoretical Physics, 2017, 67, 554.	1.1	16
182	Physiological fluid flow analysis by means of contraction and expansion with addition of hybrid nanoparticles. European Physical Journal Plus, 2019, 134, 1.	1.2	16
183	Numerical investigation of Cattanneo-Christov heat flux in CNT suspended nanofluid flow over a stretching porous surface with suction and injection. Discrete and Continuous Dynamical Systems - Series S, 2018, 11, 583-594.	0.6	16
184	Exact and numerical simulation of peristaltic flow of a nonâ€Newtonian fluid with inclined magnetic field in an endoscope. International Journal for Numerical Methods in Fluids, 2011, 66, 919-934.	0.9	15
185	Simulation of thermal and velocity slip on the peristaltic flow of a Johnson–Segalman fluid in an inclined asymmetric channel. International Journal of Heat and Mass Transfer, 2012, 55, 5495-5502.	2.5	15
186	Application of Rabinowitsch Fluid Model in Peristalsis. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2014, 69, 473-480.	0.7	15
187	Unsteady Oscillatory Stagnation Point Flow of a Jeffrey Fluid. Journal of Aerospace Engineering, 2014, 27, 636-643.	0.8	15
188	Peristaltic impulsion of MHD biviscosity fluid in a lopsided channel: Closed-form solution. European Physical Journal Plus, 2014, 129, 1.	1.2	15
189	Heat Transfer Analysis for the Peristaltic Flow of Herschel–Bulkley Fluid in a Nonuniform Inclined Channel. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2015, 70, 23-32.	0.7	15
190	Biomathematical analysis of carbon nanotubes due to ciliary motion. International Journal of Biomathematics, 2015, 08, 1550023.	1.5	15
191	Study of heat transfer on physiological driven movement with CNT nanofluids and variable viscosity. Computer Methods and Programs in Biomedicine, 2016, 136, 21-29.	2.6	15
192	Heat transfer analysis with temperature-dependent viscosity for the peristaltic flow of nano fluid with shape factor over heated tube. International Journal of Hydrogen Energy, 2017, 42, 25088-25101.	3.8	15
193	DOUBLE-DIFFUSIVE NATURAL CONVECTIVE PERISTALTIC PRANDTL FLOW IN A POROUS CHANNEL SATURATED WITH A NANOFLUID. Heat Transfer Research, 2017, 48, 283-290.	0.9	15
194	Combined effects of heat and chemical reactions on the peristaltic flow of carreau fluid model in a diverging tube. International Journal for Numerical Methods in Fluids, 2011, 67, 1818-1832.	0.9	14
195	An analytical and numerical study of peristaltic transport of a Johnson—Segalman fluid in an endoscope. Chinese Physics B, 2013, 22, 014703.	0.7	14
196	Peristaltic Flow of a Nanofluid in a Diverging Tube for Jeffrey Fluid. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1335-1341.	0.4	14
197	Mathematical model for the peristaltic flow of nanofluid through eccentric tubes comprising porous medium. Applied Nanoscience (Switzerland), 2014, 4, 733-743.	1.6	14
198	Heat transfer analysis of the peristaltic instinct of biviscosity fluid with the impact of thermal and velocity slips. International Communications in Heat and Mass Transfer, 2014, 58, 193-199.	2.9	14

#	Article	IF	CITATIONS
199	Peristaltic Flow of Cu-Water Nanofluid in a Tube. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1411-1416.	0.4	14
200	CNT suspended CuO+H2O nano fluid and energy analysis for the peristaltic flow in a permeable channel. AEJ - Alexandria Engineering Journal, 2015, 54, 623-633.	3.4	14
201	Influence of Magnetic Field and Slip on Jeffrey Fluid in a Ciliated Symmetric Channel with Metachronal Wave Pattern. Journal of Applied Fluid Mechanics, 2016, 9, 565-572.	0.4	14
202	Simulation of heat transfer on the peristaltic flow of a Jeffrey-six constant fluid in a diverging tube. International Communications in Heat and Mass Transfer, 2011, 38, 154-159.	2.9	13
203	Analytical and Numerical Analysis of Vogel's Model of Viscosity on the Peristaltic Flow of Jeffrey Fluid. Journal of Aerospace Engineering, 2012, 25, 64-70.	0.8	13
204	Heat and Mass Transfer Analysis of Peristaltic Flow of Nanofluid in a Vertical Rectangular Duct by Using the Optimized Series Solution and Genetic Algorithm. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1133-1149.	0.4	13
205	Peristaltic Flow of a Sutterby Nanofluid with Double-Diffusive Natural Convection. Journal of Computational and Theoretical Nanoscience, 2015, 12, 1546-1552.	0.4	13
206	A New Thermal Conductivity Model With Shaped Factor Ferromagnetism Nanoparticles Study for the Blood Flow in Non-Tapered Stenosed Arteries. IEEE Transactions on Nanobioscience, 2015, 14, 780-789.	2.2	13
207	Magneto-nanofluid flow with heat transfer past a stretching surface for the new heat flux model using numerical approach. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 1215-1230.	1.6	13
208	Viscous dissipation and joule heating effects on forced convection power law fluid flow through annular duct. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 5858-5865.	1.1	13
209	Numerical Solutions of Peristaltic Flow of a Newtonian Fluid under the Effects of Magnetic Field and Heat Transfer in a Porous Concentric Tubes. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 369-380.	0.7	12
210	THE NUMERICAL AND ANALYTICAL SOLUTION OF PERISTALTIC FLOW OF A JEFFREY FLUID IN AN INCLINED TUBE WITH PARTIAL SLIP. Journal of Mechanics in Medicine and Biology, 2011, 11, 773-802.	0.3	12
211	Heat transfer analysis of bi-viscous ciliary motion fluid. International Journal of Biomathematics, 2015, 08, 1550026.	1.5	12
212	Blood flow suspension in tapered stenosed arteries for Walter's B fluid model. Computer Methods and Programs in Biomedicine, 2016, 132, 45-55.	2.6	12
213	Biomechanically driven unsteady non-uniform flow of Copper water and Silver water nanofluids through finite length channel. Computer Methods and Programs in Biomedicine, 2017, 146, 1-9.	2.6	12
214	Ferromagnetic nano model study for the peristaltic flow in a plumb duct with permeable walls. Microsystem Technologies, 2019, 25, 1227-1234.	1.2	12
215	Comparative study on ethylene glycol based Ag-Al ₂ O ₃ and Al ₂ O ₃ nanofluids flow driven by electroosmotic and peristaltic pumping: a nano-coolant for radiators. Physica Scripta, 2020, 95, 115208.	1.2	12
216	Effects of heat and chemical reactions on peristaltic flow of Newtonian fluid in a diverging tube with inclined MHD. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 659-668.	0.8	11

#	Article	IF	CITATIONS
217	Effects of heat and mass transfer peristaltic flow ofÂWilliamson fluid in a vertical annulus. Meccanica, 2012, 47, 141-151.	1.2	11
218	Influence of heat and chemical reactions on the Sisko fluid model for blood flow through a tapered artery with a mild stenosis. Quaestiones Mathematicae, 2014, 37, 157-177.	0.2	11
219	Blood flow analysis in tapered stenosed arteries with pseudoplastic characteristics. International Journal of Biomathematics, 2014, 07, 1450065.	1.5	11
220	Theoretical Analysis for Peristaltic Flow of Carreau Nano Fluid in a Curved Channel with Compliant Walls. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1443-1452.	0.4	11
221	Series solution of unsteady peristaltic flow of a Carreau fluid in small intestines. International Journal of Biomathematics, 2014, 07, 1450049.	1.5	11
222	Endoscopy Analysis for the Peristaltic Flow of Nanofluids Containing Carbon Nanotubes with Heat Transfer. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2015, 70, 745-755.	0.7	11
223	Heat and peristaltic propagation of water based nanoparticles with variable fluid features. Physica Scripta, 2019, 94, 125704.	1.2	11
224	Simulation of heating scheme and chemical reactions on the peristaltic flow of an Eyringâ€Powell fluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2012, 22, 764-776.	1.6	10
225	Biomathematical study of nonâ€Newtonian nanoï¬,uid in a diverging tube. Heat Transfer - Asian Research, 2013, 42, 389-402.	2.8	10
226	Copper nanoparticle analysis for peristaltic flow in a curved channel with heat transfer characteristics. European Physical Journal Plus, 2014, 129, 1.	1.2	10
227	ANTI-BACTERIAL APPLICATIONS FOR NEW THERMAL CONDUCTIVITY MODEL IN ARTERIES WITH CNT SUSPENDED NANOFLUID. Journal of Mechanics in Medicine and Biology, 2016, 16, 1650063.	0.3	10
228	Hydromagnetic Blood Flow of Sisko Fluid in a Non-uniform Channel Induced by Peristaltic Wave. Communications in Theoretical Physics, 2017, 68, 103.	1.1	10
229	Effects of heat and chemical reaction on Jeffrey fluid model with stenosis. Applicable Analysis, 2012, 91, 1631-1647.	0.6	9
230	Blood flow study of Williamson fluid through stenosed arteries with permeable walls. European Physical Journal Plus, 2014, 129, 1.	1.2	9
231	Biological Analysis of Jeffrey Nanofluid in a Curved Channel With Heat Dissipation. IEEE Transactions on Nanobioscience, 2014, 13, 431-437.	2.2	9
232	Mathematical study for peristaltic flow of Williamson fluid in a curved channel. International Journal of Biomathematics, 2015, 08, 1550005.	1.5	9
233	Entropy generation analysis for metachronal beating of ciliated Cu-water nanofluid with magnetic field. International Journal of Exergy, 2016, 19, 41.	0.2	9
234	Biomechanically driven flow of a magnetohydrodynamic bio-fluid in a micro-vessel with slip and convective boundary conditions. Microsystem Technologies, 2019, 25, 151-173.	1.2	9

#	Article	IF	CITATIONS
235	Mathematical modeling of Aphron drilling nanofluid driven by electroosmotically modulated peristalsis through a pipe. Mathematical Modelling of Natural Phenomena, 2022, 17, 19.	0.9	9
236	ANALYTICAL AND NUMERICAL SOLUTIONS OF PERISTALTIC FLOW OF WILLIAMSON FLUID MODEL IN AN ENDOSCOPE. Journal of Mechanics in Medicine and Biology, 2011, 11, 941-957.	0.3	8
237	Biomechanical Analysis of Eyring Prandtl Fluid Model for Blood Flow in Stenosed Arteries. International Journal of Nonlinear Sciences and Numerical Simulation, 2013, 14, 345-353.	0.4	8
238	Nanoparticles Fraction on the Peristaltic Flow of Third Order Fluid. Journal of Computational and Theoretical Nanoscience, 2014, 11, 47-52.	0.4	8
239	Natural Convective MHD Peristaltic Flow of a Nanofluid with Convective Surface Boundary Conditions. Journal of Computational and Theoretical Nanoscience, 2015, 12, 257-262.	0.4	8
240	Rheological Analysis of CNT Suspended Nanofluid with Variable Viscosity: Numerical Solution. Communications in Theoretical Physics, 2017, 67, 681.	1.1	8
241	Transient Magneto-Squeezing Flow of NaCl-CNP Nanofluid over a Sensor Surface Inspired by Temperature Dependent Viscosity. Defect and Diffusion Forum, 0, 387, 600-614.	0.4	8
242	Slip analysis with thermally developed peristaltic motion of nanoparticles under the influence of variable viscosity in vertical configuration. European Physical Journal Plus, 2019, 134, 1.	1.2	8
243	INFLUENCE OF HEAT AND CHEMICAL REACTIONS ON HYPERBOLIC TANGENT FLUID MODEL FOR BLOOD FLOW THROUGH A TAPERED ARTERY WITH A STENOSIS. Heat Transfer Research, 2012, 43, 69-94.	0.9	8
244	Peristaltic Flow of Hyperbolic Tangent Fluid in a Diverging Tube with Heat and Mass Transfer. Journal of Energy Engineering - ASCE, 2013, 139, 124-135.	1.0	7
245	Advanced Study of Unsteady Heat and Chemical Reaction with Ramped Wall and Slip Effect on a Viscous Fluid. Communications in Theoretical Physics, 2017, 67, 301.	1.1	7
246	Carbon nanotube (CNT)-suspended nanofluid analysis due to metachronal beating of cilia with entropy generation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 2001-2012.	0.8	7
247	MHD Peristaltic Flow of a Nanofluid with Newtonian Heating. Current Nanoscience, 2014, 10, 863-868.	0.7	7
248	MHD effect on nanofluid with energy and hydrothermal behavior between two collateral plates: Application of new semi analytical technique. Thermal Science, 2017, 21, 2081-2093.	0.5	7
249	Exact and numerical solutions of a micropolar fluid in a vertical annulus. Numerical Methods for Partial Differential Equations, 2010, 26, 1660-1674.	2.0	6
250	Numerical Analysis of Peristaltic Transport of a Tangent Hyperbolic Fluid in an Endoscope. Journal of Aerospace Engineering, 2011, 24, 309-317.	0.8	6
251	Endoscopic and heat transfer effects on the peristaltic flow of a thirdâ€order fluid with chemical reactions. Asia-Pacific Journal of Chemical Engineering, 2012, 7, 45-54.	0.8	6
252	Nanofluid Analysis for the Intestinal Flow in a Symmetric Channel. IEEE Transactions on Nanobioscience, 2014, 13, 392-396.	2.2	6

#	Article	IF	CITATIONS
253	Mixed convection analysis for blood flow through arteries on Williamson fluid model. International Journal of Biomathematics, 2015, 08, 1550045.	1.5	6
254	Biological Analysis of Nano Prandtl Fluid Model in a Diverging Tube. Journal of Computational and Theoretical Nanoscience, 2015, 12, 105-112.	0.4	6
255	Numerical and analytical simulation of peristaltic flow of a Jeffrey-six constant fluid. Applicable Analysis, 2015, 94, 1420-1438.	0.6	6
256	Natural Propulsion with Lorentz Force and Nanoparticles in a Bioinspired Lopsided Ciliated Channel. Journal of Bionic Engineering, 2017, 14, 172-181.	2.7	6
257	SIMULATION OF THE SECOND-GRADE FLUID MODEL AND HEATING SCHEME OF THE BLOOD FLOW THROUGH A TAPERED ARTERY WITH MASS TRANSFER. Heat Transfer Research, 2014, 45, 391-408.	0.9	6
258	INFLUENCE OF HEAT TRANSFER AND VARIABLE VISCOSITY IN VERTICAL POROUS ANNULUS WITH PERISTALSIS. Journal of Porous Media, 2011, 14, 849-863.	1.0	6
259	Numerical and series solutions of the peristaltic motion of an Oldroyd 8-constant fluid in an endoscope. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 987-993.	0.9	5
260	Endoscopic Effects on the Peristaltic Flow of a Jeffrey Six-Constant Fluid Model with Variable Viscosity. Journal of Aerospace Engineering, 2013, 26, 535-543.	0.8	5
261	Influence of mixed convection on blood flow of Jeffrey fluid through a tapered stenosed artery. Thermal Science, 2013, 17, 533-546.	0.5	5
262	Peristaltic Flow of a Prandtl Nano Fluid in an Asymmetric Porous Channel: Numerical Solutions. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1342-1348.	0.4	5
263	Carbon Nano Tubes Analysis for Blood Flow in Stenosed Tapered Arteries. IEEE Nanotechnology Magazine, 2015, 14, 452-463.	1.1	5
264	Stagnation Point Flow Study with Water Based Nanoparticles Aggregation Over a Stretching Sheet: Numerical Solution. Journal of Computational and Theoretical Nanoscience, 2016, 13, 8615-8619.	0.4	5
265	Carbon nanotube analysis for an unsteady physiological flow in a non-uniform channel of finite length. European Physical Journal Plus, 2017, 132, 1.	1.2	5
266	HEAT TRANSFER ANALYSIS FOR THE PERISTALTIC FLOW OF CHYME IN SMALL INTESTINE: A THEORETICAL STUDY. Journal of Mechanics in Medicine and Biology, 2012, 12, 1250035.	0.3	4
267	Effects of Induced Magnetic Field on the Peristaltic Flow of an Eyring-Powell Fluid. Journal of Aerospace Engineering, 2013, 26, 835-841.	0.8	4
268	Double-Diffusive Natural Convective Peristaltic Flow of a Nanofluid in an Asymmetric Porous Channel. Journal of Computational and Theoretical Nanoscience, 2015, 12, 1553-1559.	0.4	4
269	Natural Convective Flow Analysis For Nanofluids With Reynold [,] s Model of Viscosity. International Journal of Chemical Reactor Engineering, 2016, 14, 1101-1111.	0.6	4
270	Influence of thermal and velocity slip on the peristaltic flow of Cu–water nanofluid with magnetic field. Applied Nanoscience (Switzerland), 2016, 6, 417-423.	1.6	4

#	Article	IF	CITATIONS
271	Double Diffusion Effects on Magnetohydrodynamic Non-Newtonian Fluid Nanoparticles. Journal of Computational and Theoretical Nanoscience, 2017, 14, 694-703.	0.4	4
272	Entropy Generation Analysis for the Peristaltic Flow of Cu-water Nanofluid with Magnetic Field in a Lopsided Channel. Journal of Applied Fluid Mechanics, 2016, 9, 605-613.	0.4	4
273	Blood flow of Carreau fluid in a tapered artery with mixed convection. International Journal of Biomathematics, 2014, 07, 1450068.	1.5	3
274	BIOPHYSICAL HEAT TRANSFER STUDY FOR THE CONTRACTION AND EXPANSION OF MUSCLES WITH MULTI-WALL CARBON NANOTUBES. Journal of Mechanics in Medicine and Biology, 2017, 17, 1750014.	0.3	3
275	Nanoparticle analysis of non-Newtonian fluid with slip and multiple convective boundary conditions. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2018, 232, 369-379.	1.4	3
276	Numerical Simulation of Nanoparticles with Variable Viscosity over a Stretching Sheet. , 2018, , .		3
277	Numerical Simulation of Nanoparticle Fraction for the Peristaltic Flow of a Six Constant Jeffrey's Fluid Model. Current Nanoscience, 2013, 9, 798-803.	0.7	3
278	Application of radially varying magnetic field on a peristaltic flow of nonâ€Newtonian fluid in the presence of heat and mass transfer. Heat Transfer - Asian Research, 2010, 39, 555-574.	2.8	2
279	Peristaltic flow of a Prandtl fluid model in an asymmetric channel. International Journal of Physical Sciences, 2012, 7, .	0.1	2
280	Influence of heat transfer on the nonorthogonal stagnation point flow of a thirdâ€order fluid towards a stretching surface. Heat Transfer - Asian Research, 2013, 42, 319-334.	2.8	2
281	Mathematical analysis of Phan-Thien–Tanner fluid model for blood in arteries. International Journal of Biomathematics, 2015, 08, 1550064.	1.5	2
282	OBLIQUE STAGNATION-POINT FLOW OF NON-NEWTONIAN FLUID WITH VARIABLE VISCOSITY. Heat Transfer Research, 2018, 49, 1587-1603.	0.9	2
283	Nanocomposite microemulsions study of single-walled carbon nanotubes in arteries. , 2018, , 649-665.		2
284	Effect of the Hall currents and thermal radiation on the flow of a nanofluid through a vertical rotating channel. Mathematical Methods in the Applied Sciences, 0, , .	1.2	2
285	SERIES SOLUTIONS FOR THE STAGNATION FLOW OF A MAXWELL FLUID OVER A SHRINKING SHEET. Composites: Mechanics, Computations, Applications, 2011, 2, 297-311.	0.2	2
286	NANOPARTICLE FRACTION IN AN ANNULUS IN THE JEFFREY FLUID MODEL. Heat Transfer Research, 2016, 47, 707-720.	0.9	2
287	A comparative study of serological diagnosis of Dengue outbreak 2019. African Health Sciences, 2021, 21, 1117-1123.	0.3	2
288	Effects of Variable Viscosity on the Peristaltic Motion in a Third-Order Fluid. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2010, 65, 901-918.	0.7	1

#	Article	IF	CITATIONS
289	PERISTALTIC FLOW OF REINER-RIVLIN FLUID IN AN ENDOSCOPE. Composites: Mechanics, Computations, Applications, 2012, 3, 63-77.	0.2	1
290	Peristaltic Flow of Johnson-Segalman Fluid with Nanoparticles. Journal of Aerospace Engineering, 2014, 27, 404-413.	0.8	1
291	Heat transfer analysis of MHD viscous fluid in a ciliated tube with entropy generation. Mathematical Methods in the Applied Sciences, 2023, 46, 11495-11508.	1.2	1
292	Peristaltic flow of a Jeffreyâ€six constant fluid in a uniform inclined tube. International Journal for Numerical Methods in Fluids, 2012, 69, 1550-1565.	0.9	0
293	Thermophysical Transport of Slip Flow Past a Convective Sheet with Suspended Carbon Nanotubes Submerged in Water. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2020, 90, 93-100.	0.8	0
294	SERIES SOLUTIONS FOR UNSTEADY STAGNATION POINT FLOWS OF A NON-NEWTONIAN FLUID OVER A SHRINKING SHEET. Composites: Mechanics, Computations, Applications, 2013, 4, 303-318.	0.2	0
295	Mathematical Model for Blood Flow Through Tapered Arteries with Temperature Dependent Viscosity. Journal of Advanced Mathematics and Applications, 2014, 3, 122-129.	0.5	0