Seunghyun Weon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9350265/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unveiling the collective effects of moisture and oxygen on the photocatalytic degradation of m-Xylene using a titanium dioxide supported platinum catalyst. Chemical Engineering Journal, 2022, 439, 135747.	6.6	20
2	Single-Atom Cobalt Incorporated in a 2D Graphene Oxide Membrane for Catalytic Pollutant Degradation. Environmental Science & Technology, 2022, 56, 1341-1351.	4.6	72
3	Oxygen vacancy engineering of cerium oxide for the selective photocatalytic oxidation of aromatic pollutants. Journal of Hazardous Materials, 2021, 404, 123976.	6.5	63
4	Environmental Materials beyond and below the Nanoscale: Single-Atom Catalysts. ACS ES&T Engineering, 2021, 1, 157-172.	3.7	88
5	Cobalt Single Atoms on Tetrapyridomacrocyclic Support for Efficient Peroxymonosulfate Activation. Environmental Science & Technology, 2021, 55, 1242-1250.	4.6	185
6	Site-Selective Loading of Single-Atom Pt on TiO ₂ for Photocatalytic Oxidation and Reductive Hydrodefluorination. ACS ES&T Engineering, 2021, 1, 512-522.	3.7	42
7	Conflicting Roles of Coordination Number on Catalytic Performance of Single-Atom Pt Catalysts. ACS Catalysis, 2021, 11, 5586-5592.	5.5	38
8	Photoelectrocatalysis as a high-efficiency platform for pulping wastewater treatment and energy production. Chemical Engineering Journal, 2021, 412, 128612.	6.6	49
9	Membrane-Confined Iron Oxychloride Nanocatalysts for Highly Efficient Heterogeneous Fenton Water Treatment. Environmental Science & Technology, 2021, 55, 9266-9275.	4.6	135
10	Platinized titanium dioxide (Pt/TiO2) as a multi-functional catalyst for thermocatalysis, photocatalysis, and photothermal catalysis for removing air pollutants. Applied Materials Today, 2021, 23, 100993.	2.3	21
11	Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nature Communications, 2021, 12, 5179.	5.8	87
12	Post-Synthesis modification of metal-organic frameworks using Schiff base complexes for various catalytic applications. Chemical Engineering Journal, 2021, 423, 130230.	6.6	42
13	Self-wetting triphase photocatalysis for effective and selective removal of hydrophilic volatile organic compounds in air. Nature Communications, 2021, 12, 6259.	5.8	50
14	Mechanism of Heterogeneous Fenton Reaction Kinetics Enhancement under Nanoscale Spatial Confinement. Environmental Science & Technology, 2020, 54, 10868-10875.	4.6	188
15	Amorphous Pd-Loaded Ti ₄ O ₇ Electrode for Direct Anodic Destruction of Perfluorooctanoic Acid. Environmental Science & amp; Technology, 2020, 54, 10954-10963.	4.6	76
16	Enhanced Pollutant Adsorption and Regeneration of Layered Double Hydroxide-Based Photoregenerable Adsorbent. Environmental Science & Technology, 2020, 54, 9106-9115.	4.6	43
17	Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H ₂ O ₂ production. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6376-6382.	3.3	245
18	Substrate-specific mineralization and deactivation behaviors of TiO2 as an air-cleaning photocatalyst. Applied Catalysis B: Environmental, 2020, 275, 119145.	10.8	56

SEUNGHYUN WEON

#	Article	IF	CITATIONS
19	Triplet–Triplet Annihilation Upconversion in Broadly Absorbing Layered Film Systems for Sub-Bandgap Photocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 13304-13318.	4.0	29
20	Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nature Communications, 2019, 10, 940.	5.8	349
21	Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation. Environmental Science: Nano, 2019, 6, 3185-3214.	2.2	124
22	Dual-components modified TiO2 with Pt and fluoride as deactivation-resistant photocatalyst for the degradation of volatile organic compound. Applied Catalysis B: Environmental, 2018, 220, 1-8.	10.8	125
23	Active {001} Facet Exposed TiO ₂ Nanotubes Photocatalyst Filter for Volatile Organic Compounds Removal: From Material Development to Commercial Indoor Air Cleaner Application. Environmental Science & Technology, 2018, 52, 9330-9340.	4.6	121
24	Freestanding doubly open-ended TiO2 nanotubes for efficient photocatalytic degradation of volatile organic compounds. Applied Catalysis B: Environmental, 2017, 205, 386-392.	10.8	73
25	Scaffold-Like Titanium Nitride Nanotubes with a Highly Conductive Porous Architecture as a Nanoparticle Catalyst Support for Oxygen Reduction. ACS Catalysis, 2016, 6, 3914-3920.	5.5	51
26	Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic Compounds. Environmental Science & Technology, 2016, 50, 10134-10142.	4.6	546
27	Plasmon-Enhanced Sub-Bandgap Photocatalysis via Triplet–Triplet Annihilation Upconversion for Volatile Organic Compound Degradation. Environmental Science & Technology, 2016, 50, 11184-11192.	4.6	53
28	Robust Co-catalytic Performance of Nanodiamonds Loaded on WO ₃ for the Decomposition of Volatile Organic Compounds under Visible Light. ACS Catalysis, 2016, 6, 8350-8360.	5.5	98
29	TiO ₂ Nanotubes with Open Channels as Deactivation-Resistant Photocatalyst for the Degradation of Volatile Organic Compounds. Environmental Science & Technology, 2016, 50, 2556-2563.	4.6	243