Jason J Mcdougall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9350030/publications.pdf Version: 2024-02-01

		101535	123420
93	4,294	36	61
papers	4,294 citations	h-index	g-index
113	113	113	4999
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Rat Grimace Scale: A Partially Automated Method for Quantifying Pain in the Laboratory Rat via Facial Expressions. Molecular Pain, 2011, 7, 1744-8069-7-55.	2.1	521
2	The Symptoms of Osteoarthritis and the Genesis of Pain. Rheumatic Disease Clinics of North America, 2008, 34, 623-643.	1.9	295
3	Arthritis and pain. Neurogenic origin of joint pain. Arthritis Research and Therapy, 2006, 8, 220.	3.5	212
4	Osteoarthritis: the genesis of pain. Rheumatology, 2018, 57, iv43-iv50.	1.9	183
5	Attenuation of early phase inflammation by cannabidiol prevents pain and nerve damage in rat osteoarthritis. Pain, 2017, 158, 2442-2451.	4.2	180
6	A distinct role for transient receptor potential ankyrin 1, in addition to transient receptor potential vanilloid 1, in tumor necrosis factor α-induced inflammatory hyperalgesia and Freund's complete adjuvant-induced monarthritis. Arthritis and Rheumatism, 2011, 63, 819-829.	6.7	151
7	Preclinical Assessment of Inflammatory Pain. CNS Neuroscience and Therapeutics, 2016, 22, 88-101.	3.9	124
8	Effects of the novel TRPV1 receptor antagonist SB366791 in vitro and in vivo in the rat. Neuroscience Letters, 2005, 385, 137-142.	2.1	110
9	Grading of monosodium iodoacetate-induced osteoarthritis reveals a concentration-dependent sensitization of nociceptors in the knee joint of the rat. Neuroscience Letters, 2009, 465, 184-188.	2.1	106
10	Cannabinoidâ€mediated antinociception is enhanced in rat osteoarthritic knees. Arthritis and Rheumatism, 2008, 58, 145-153.	6.7	83
11	Morphological and immunohistochemical examination of nerves in normal and injured collateral ligaments of rat, rabbit, and human knee joints. , 1997, 248, 29-39.		77
12	Vasoactive intestinal peptide (VIP) is a modulator of joint pain in a rat model of osteoarthritis. Pain, 2006, 123, 98-105.	4.2	73
13	Microglial pannexin-1 channel activation is a spinal determinant of joint pain. Science Advances, 2018, 4, eaas9846.	10.3	73
14	Unravelling the relationship between age, nociception and joint destruction in naturally occurring osteoarthritis of Dunkin Hartley guinea pigs. Pain, 2009, 141, 222-232.	4.2	72
15	Effects of Chondroitin and Glucosamine Sulfate in a Dietary Bar Formulation on Inflammation, Interleukin-11², Matrix Metalloprotease-9, and Cartilage Damage in Arthritis. Experimental Biology and Medicine, 2005, 230, 255-262.	2.4	68
16	Triggering of proteinaseâ€activated receptor 4 leads to joint pain and inflammation in mice. Arthritis and Rheumatism, 2009, 60, 728-737.	6.7	66
17	Local application of the endocannabinoid hydrolysis inhibitor URB597 reduces nociception in spontaneous and chemically induced models of osteoarthritis. Pain, 2011, 152, 975-981.	4.2	63
18	Involvement of Nav 1.8 sodium ion channels in the transduction of mechanical pain in a rodent model of osteoarthritis. Arthritis Research and Therapy, 2012, 14, R5.	3.5	63

#	Article	IF	CITATIONS
19	The Symptoms of Osteoarthritis and the Genesis of Pain. Medical Clinics of North America, 2009, 93, 83-100.	2.5	60
20	Efficacy, Tolerability, and Safety of Cannabinoid Treatments in the Rheumatic Diseases: A Systematic Review of Randomized Controlled Trials. Arthritis Care and Research, 2016, 68, 681-688.	3.4	60
21	Neutrophil elastase induces inflammation and pain in mouse knee joints via activation of proteinaseâ€activated receptorâ€2. British Journal of Pharmacology, 2016, 173, 766-777.	5.4	57
22	Leukocyte trafficking and pain behavioral responses to a hydrogen sulfide donor in acute monoarthritis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R814-R820.	1.8	55
23	Lysophosphatidic acid provides a missing link between osteoarthritis and joint neuropathic pain. Osteoarthritis and Cartilage, 2017, 25, 926-934.	1.3	52
24	Mechanisms and Mediators That Drive Arthritis Pain. Current Osteoporosis Reports, 2015, 13, 216-224.	3.6	50
25	Helminth Parasites and the Modulation of Joint Inflammation. Journal of Parasitology Research, 2011, 2011, 1-8.	1.2	49
26	The abnormal cannabidiol analogue O-1602 reduces nociception in a rat model of acute arthritis via the putative cannabinoid receptor GPR55. Neuroscience Letters, 2011, 500, 72-76.	2.1	48
27	Rheumatologists lack confidence in their knowledge of cannabinoids pertaining to the management of rheumatic complaints. BMC Musculoskeletal Disorders, 2014, 15, 258.	1.9	48
28	Age and frailty as risk factors for the development of osteoarthritis. Mechanisms of Ageing and Development, 2019, 180, 21-28.	4.6	48
29	Proteinase-Activated Receptor-4 (PAR ₄) Activation Leads to Sensitization of Rat Joint Primary Afferents Via a Bradykinin B ₂ Receptor-Dependent Mechanism. Journal of Neurophysiology, 2010, 103, 155-163.	1.8	46
30	Infection with an intestinal helminth parasite reduces Freund's complete adjuvant–induced monoarthritis in mice. Arthritis and Rheumatism, 2011, 63, 434-444.	6.7	46
31	Cannabis and joints: scientific evidence for the alleviation of osteoarthritis pain by cannabinoids. Current Opinion in Pharmacology, 2018, 40, 104-109.	3.5	45
32	The cannabinomimetic arachidonyl-2-chloroethylamide (ACEA) acts on capsaicin-sensitive TRPV1 receptors but not cannabinoid receptors in rat joints. British Journal of Pharmacology, 2004, 142, 1361-1367.	5.4	43
33	Prophylactic inhibition of neutrophil elastase prevents the development of chronic neuropathic pain in osteoarthritic mice. Journal of Neuroinflammation, 2017, 14, 168.	7.2	43
34	Injury-Induced Changes in mRNA Levels Differ Widely between Anterior Cruciate Ligament and Medial Collateral Ligament. American Journal of Sports Medicine, 2008, 36, 1337-1346.	4.2	39
35	The role of kinin B ₁ receptor and the effect of angiotensin I-converting enzyme inhibition on acute gout attacks in rodents. Annals of the Rheumatic Diseases, 2016, 75, 260-268.	0.9	38
36	Divergent peripheral effects of pituitary adenylate cyclase-activating polypeptide-38 on nociception in rats and mice. Pain, 2009, 141, 143-150.	4.2	37

#	Article	IF	CITATIONS
37	Attenuation of Knee Joint Inflammation by Peripherally Administered Endomorphin-1. Journal of Molecular Neuroscience, 2004, 22, 125-138.	2.3	36
38	Chronic arthritis down-regulates peripheral μ-opioid receptor expression with concomitant loss of endomorphin 1 antinociception. Arthritis and Rheumatism, 2005, 52, 3210-3219.	6.7	36
39	Murine autoimmune arthritis is exaggerated by infection with the rat tapeworm, Hymenolepis diminuta. International Journal for Parasitology, 2013, 43, 593-601.	3.1	36
40	Peripheral modulation of rat knee joint afferent mechanosensitivity by nociceptin/orphanin FQ. Neuroscience Letters, 2000, 288, 123-126.	2.1	31
41	Gabapentin reduces the mechanosensitivity of fine afferent nerve fibres in normal and inflamed rat knee joints. Pain, 2003, 104, 363-366.	4.2	31
42	Participation of NK 1 receptors in nociceptin-induced modulation of rat knee joint mechanosensitivity. Experimental Brain Research, 2001, 137, 249-253.	1.5	29
43	Inhibitory effect of amiloride and gadolinium on fine afferent nerves in the rat knee: evidence of mechanogated ion channels in joints. Experimental Brain Research, 2005, 167, 114-118.	1.5	29
44	Neuropeptides regulate expression of matrix molecule, growth factor and inflammatory mediator mRNA in explants of normal and healing medial collateral ligament. Regulatory Peptides, 2007, 142, 1-6.	1.9	28
45	Peripheral analgesia: Hitting pain where it hurts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 459-467.	3.8	27
46	Spatial Variation in Sympathetic Influences on the Vasculature of the Synovium and Medial Collateral Ligament of the Rabbit Knee Joint. Journal of Physiology, 1997, 503, 435-443.	2.9	26
47	Activation of <scp>PAR</scp> ₂ receptors sensitizes primary afferents and causes leukocyte rolling and adherence in the rat knee joint. British Journal of Pharmacology, 2012, 167, 1665-1678.	5.4	25
48	Tapping into the endocannabinoid system to ameliorate acute inflammatory flares and associated pain in mouse knee joints. Arthritis Research and Therapy, 2014, 16, 437.	3.5	25
49	Targeting the Nav1.8 ion channel engenders sex-specific responses in lysophosphatidic acid–induced joint neuropathy. Pain, 2019, 160, 269-278.	4.2	25
50	Role of capsaicin-sensitive nerves and tachykinins in mast cell tryptase-induced inflammation of murine knees. Inflammation Research, 2016, 65, 725-736.	4.0	23
51	Loss of vasomotor responsiveness to the μ-opioid receptor ligand endomorphin-1 in adjuvant monoarthritic rat knee joints. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 286, R634-R641.	1.8	22
52	Early blockade of joint inflammation with a fatty acid amide hydrolase inhibitor decreases end-stage osteoarthritis pain and peripheral neuropathy in mice. Arthritis Research and Therapy, 2017, 19, 106.	3.5	22
53	Combatting joint pain and inflammation by dual inhibition of monoacylglycerol lipase and cyclooxygenase-2 in a rat model of osteoarthritis. Arthritis Research and Therapy, 2020, 22, 9.	3.5	22
54	A role for calcitonin gene-related peptide in rabbit knee joint ligament healing. Canadian Journal of Physiology and Pharmacology, 2000, 78, 535-540.	1.4	21

#	Article	IF	CITATIONS
55	The role of joint nerves and mast cells in the alteration of vasoactive intestinal peptide (VIP) sensitivity during inflammation progression in rats. British Journal of Pharmacology, 2005, 145, 104-113.	5.4	20
56	Vascular volume determination of articular tissues in normal and anterior cruciate ligament-deficient rabbit knees. , 1998, 251, 207-213.		19
57	Stimulation of sensory neuropeptide release by nociceptin/orphanin FQ leads to hyperaemia in acutely inflamed rat knees. British Journal of Pharmacology, 2006, 148, 938-946.	5.4	19
58	The pronociceptive effect of proteinase-activated receptor-4 stimulation in rat knee joints is dependent on mast cell activation. Pain, 2011, 152, 354-360.	4.2	19
59	Involvement of Mast Cells in α7 Nicotinic Receptor Agonist Exacerbation of Freund's Complete Adjuvant–Induced Monoarthritis in Mice. Arthritis and Rheumatology, 2016, 68, 542-552.	5.6	18
60	Cannabinoid control of neurogenic inflammation. British Journal of Pharmacology, 2020, 177, 4386-4399.	5.4	18
61	Neurogenic origin of articular hyperemia in early degenerative joint disease. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R745-R752.	1.8	17
62	Evaluation of the novel avocado/soybean unsaponifiable Arthrocen to alter joint pain and inflammation in a rat model of osteoarthritis. PLoS ONE, 2018, 13, e0191906.	2.5	17
63	Nociceptin/orphanin FQ evokes knee joint pain in rats via a mast cell independent mechanism. Neuroscience Letters, 2006, 398, 135-138.	2.1	16
64	Neurophysiology of Arthritis Pain. Current Pain and Headache Reports, 2012, 16, 485-491.	2.9	16
65	Lack of Galanin 3 Receptor Aggravates Murine Autoimmune Arthritis. Journal of Molecular Neuroscience, 2016, 59, 260-269.	2.3	16
66	Abrogation of α-adrenergic vasoactivity in chronically inflamed rat knee joints. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R821-R827.	1.8	15
67	The Role of Proteases in Pain. Handbook of Experimental Pharmacology, 2015, 227, 239-260.	1.8	15
68	Osteoarthritis is a neurological disease – an hypothesis. Osteoarthritis and Cartilage Open, 2019, 1, 100005.	2.0	15
69	Clinical implications for cannabinoid use in the rheumatic diseases: Potential for help or harm?. Arthritis and Rheumatism, 2012, 64, 2417-2425.	6.7	14
70	Alphaâ€lâ€antitrypsin reduces inflammation and exerts chondroprotection in arthritis. FASEB Journal, 2021, 35, e21472.	0.5	14
71	Cholinergic vasoregulation in normal and adjuvant monoarthritic rat knee joints. Journal of the Autonomic Nervous System, 1998, 72, 55-60.	1.9	13
72	Age alters the ability of substance P to sensitize joint nociceptors in Guinea pigs. Journal of Molecular Neuroscience, 2007, 31, 289-296.	2.3	11

#	Article	IF	CITATIONS
73	Endocannabinoids inhibit neurogenic inflammation in murine joints by a non-canonical cannabinoid receptor mechanism. Neuropeptides, 2017, 64, 131-135.	2.2	10
74	Role of Primary Afferents in Arthritis Induced Spinal Microglial Reactivity. Frontiers in Immunology, 2021, 12, 626884.	4.8	10
75	Anti-Inflammatory and Analgesic Properties of the Cannabis Terpene Myrcene in Rat Adjuvant Monoarthritis. International Journal of Molecular Sciences, 2022, 23, 7891.	4.1	10
76	Involvement of sympathetic efferents but not capsaicin-sensitive afferents in nociceptin-mediated dual control of rat synovial blood flow. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R1477-R1485.	1.8	9
77	Protease Activated Receptors and Arthritis. International Journal of Molecular Sciences, 2021, 22, 9352.	4.1	9
78	Understanding osteoarthritis pain through animal models. Clinical and Experimental Rheumatology, 2017, 35 Suppl 107, 47-52.	0.8	9
79	Pregnancy-induced changes in rabbit medial collateral ligament vasoregulation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R1380-R1385.	1.8	8
80	Adaptation of post-traumatic angiogenesis in the rabbit knee by apposition of torn ligament ends. Journal of Orthopaedic Research, 2000, 18, 663-670.	2.3	8
81	Late gestational changes in sympathomimetic sensitivity in primagravid rabbit ligaments. Canadian Journal of Physiology and Pharmacology, 2000, 78, 528-534.	1.4	8
82	Inhibition of nitric oxide production during electrical stimulation of the nerves supplying the rat knee joint. Journal of the Autonomic Nervous System, 1996, 57, 73-77.	1.9	7
83	Dynamic measurement of bone blood perfusion with modified laser doppler imaging. Journal of Orthopaedic Research, 1999, 17, 578-581.	2.3	7
84	Denervation alters mRNA levels of repair-associated genes in a rabbit medial collateral ligament injury model. Journal of Orthopaedic Research, 2006, 24, 1842-1853.	2.3	7
85	Repetitive Activity Alters Perfusion of Proximal Interphalangeal Joints of the Human Hand. Clinical Journal of Sport Medicine, 1998, 8, 106-110.	1.8	6
86	Cannabinoids and Pain Control in the Periphery. , 0, , 325-345.		5
87	Galanin 3 receptorâ€deficient mice show no alteration in the oxazoloneâ€induced contact dermatitis phenotype. Experimental Dermatology, 2016, 25, 725-727.	2.9	4
88	Intracellular versus extracellular inhibition of calpain I causes differential effects on pain in a rat model of joint inflammation. Molecular Pain, 2021, 17, 174480692110161.	2.1	3
89	Pain responses to protease-activated receptor-2 stimulation in the spinal cord of naÃ ⁻ ve and arthritic rats. Neuroscience Letters, 2020, 739, 135391.	2.1	2
90	Joint Damage and Neuropathic Pain in Rats Treated With Lysophosphatidic Acid. Frontiers in Immunology, 2022, 13, 811402.	4.8	2

#	Article	IF	CITATIONS
91	Proteinase-Activated Receptors and Arthritis. , 2011, , 217-242.		0
92	K/BxNâ€induced polyâ€arthritis is exacerbated by infection with the intestinal helminth parasite Hymenolepis diminuta ; possible involvement of complement and mast cells. FASEB Journal, 2013, 27, 648.9.	0.5	0
93	Targeting Proteinase Activated Receptor-4 Reduces Mechanonociception During the Acute Inflammatory Phase but not the Chronic Neuropathic Phase of Osteoarthritis in Rats. Frontiers in Pharmacology, 2021, 12, 756632.	3.5	0