Sung-ha Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9349974/publications.pdf

Version: 2024-02-01

471509 642732 22 841 17 23 citations h-index g-index papers 23 23 23 911 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tracking the Penetration of Plasma Reactive Species in Tissue Models. Trends in Biotechnology, 2018, 36, 594-602.	9.3	90
2	Probing the transport of plasma-generated RONS in an agarose target as surrogate for real tissue: dependency on time, distance and material composition. Journal Physics D: Applied Physics, 2015, 48, 202001.	2.8	83
3	How to assess the plasma delivery of RONS into tissue fluid and tissue. Journal Physics D: Applied Physics, 2016, 49, 304005.	2.8	81
4	The role of UV photolysis and molecular transport in the generation of reactive species in a tissue model with a cold atmospheric pressure plasma jet. Applied Physics Letters, $2019,114,$.	3.3	69
5	Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue. Applied Physics Letters, 2015, 107, .	3.3	58
6	Modelling the helium plasma jet delivery of reactive species into a 3D cancer tumour. Plasma Sources Science and Technology, 2018, 27, 014001.	3.1	57
7	Development of a prototype wound dressing technology which can detect and report colonization by pathogenic bacteria. Biosensors and Bioelectronics, 2011, 30, 67-72.	10.1	45
8	lonized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells. Journal Physics D: Applied Physics, 2014, 47, 362001.	2.8	42
9	Studying the cytolytic activity of gas plasma with self-signalling phospholipid vesicles dispersed within a gelatin matrix. Journal Physics D: Applied Physics, 2013, 46, 185401.	2.8	36
10	In-situ UV Absorption Spectroscopy for Monitoring Transport of Plasma Reactive Species through Agarose as Surrogate for Tissue. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 439-444.	0.3	33
11	On the effect of serum on the transport of reactive oxygen species across phospholipid membranes. Biointerphases, 2015, 10, 029511.	1.6	33
12	Slow Molecular Transport of Plasma-Generated Reactive Oxygen and Nitrogen Species and O2 through Agarose as a Surrogate for Tissue. Plasma Medicine, 2015, 5, 125-143.	0.6	29
13	How membrane lipids influence plasma delivery of reactive oxygen species into cells and subsequent DNA damage: an experimental and computational study. Physical Chemistry Chemical Physics, 2019, 21, 19327-19341.	2.8	28
14	How plasma induced oxidation, oxygenation, and de-oxygenation influences viability of skin cells. Applied Physics Letters, 2016, 109, .	3.3	25
15	Modulating the concentrations of reactive oxygen and nitrogen species and oxygen in water with helium and argon gas and plasma jets. Japanese Journal of Applied Physics, 2019, 58, SAAB01.	1.5	25
16	The assessment of cold atmospheric plasma treatment of DNA in synthetic models of tissue fluid, tissue and cells. Journal Physics D: Applied Physics, 2017, 50, 274001.	2.8	21
17	Genotoxicity and cytotoxicity of the plasma jet-treated medium on lymphoblastoid WIL2-NS cell line using the cytokinesis block micronucleus cytome assay. Scientific Reports, 2017, 7, 3854.	3.3	21
18	Surface waves control bacterial attachment and formation of biofilms in thin layers. Science Advances, 2020, 6, eaaz9386.	10.3	18

#	Article	ΙF	CITATION
19	The hormesis effect of plasma-elevated intracellular ROS on HaCaT cells. Journal Physics D: Applied Physics, 2015, 48, 495401.	2.8	16
20	Effect of Lipid and Fatty Acid Composition of Phospholipid Vesicles on Long-Term Stability and Their Response to <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> Supernatants. Langmuir, 2013, 29, 6989-6995.	3.5	14
21	The Microstructure, Antimicrobial Properties, and Corrosion Resistance of Cuâ€Bearing Strip Cast Steel. Advanced Engineering Materials, 2020, 22, 1901265.	3.5	6
22	Mass Spectrometry Analysis of the Real-Time Transport of Plasma-Generated Ionic Species Through an Agarose Tissue Model Target. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 317-323.	0.3	3