Stephen J Crocker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9349930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13650-13655.	7.1	288
2	Inhibition of Calpains Prevents Neuronal and Behavioral Deficits in an MPTP Mouse Model of Parkinson's Disease. Journal of Neuroscience, 2003, 23, 4081-4091.	3.6	265
3	Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus. Nature Medicine, 1997, 3, 997-1004.	30.7	257
4	Targeted Complement Inhibition at Synapses Prevents Microglial Synaptic Engulfment and Synapse Loss in Demyelinating Disease. Immunity, 2020, 52, 167-182.e7.	14.3	244
5	Neuroprotection by the Inhibition of Apoptosis. Brain Pathology, 2000, 10, 283-292.	4.1	203
6	Attenuation of Ischemia-Induced Cellular and Behavioral Deficits by X Chromosome-Linked Inhibitor of Apoptosis Protein Overexpression in the Rat Hippocampus. Journal of Neuroscience, 1999, 19, 5026-5033.	3.6	199
7	BAG5 Inhibits Parkin and Enhances Dopaminergic Neuron Degeneration. Neuron, 2004, 44, 931-945.	8.1	199
8	An Alternate Perspective on the Roles of TIMPs and MMPs in Pathology. American Journal of Pathology, 2012, 180, 12-16.	3.8	168
9	Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9030-9039.	7.1	161
10	Human ESC-Derived MSCs Outperform Bone Marrow MSCs in the Treatment of an EAE Model of Multiple Sclerosis. Stem Cell Reports, 2014, 3, 115-130.	4.8	140
11	How factors secreted from astrocytes impact myelin repair. Journal of Neuroscience Research, 2011, 89, 13-21.	2.9	139
12	Elevated ATG5 expression in autoimmune demyelination and multiple sclerosis. Autophagy, 2009, 5, 152-158.	9.1	132
13	Regulation of Dopaminergic Loss by Fas in a 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Model of Parkinson's Disease. Journal of Neuroscience, 2004, 24, 2045-2053.	3.6	122
14	The TIMPs tango with MMPs and more in the central nervous system. Journal of Neuroscience Research, 2004, 75, 1-11.	2.9	121
15	Fibronectin- and Vitronectin-Induced Microglial Activation and Matrix Metalloproteinase-9 Expression Is Mediated by Integrins α5β1 and αvβ5. Journal of Immunology, 2007, 178, 8158-8167.	0.8	105
16	Astrocytic Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Promotes Oligodendrocyte Differentiation and Enhances CNS Myelination. Journal of Neuroscience, 2011, 31, 6247-6254.	3.6	101
17	Neuronal inclusions of αâ€synuclein contribute to the pathogenesis of Krabbe disease. Journal of Pathology, 2014, 232, 509-521.	4.5	89
18	Persistent Macrophage/Microglial Activation and Myelin Disruption after Experimental Autoimmune Encephalomyelitis in Tissue Inhibitor of Metalloproteinase-1-Deficient Mice. American Journal of Pathology, 2006, 169, 2104-2116.	3.8	85

STEPHEN J CROCKER

#	Article	IF	CITATIONS
19	c-Jun mediates axotomy-induced dopamine neuron death in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13385-13390.	7.1	84
20	Viral Persistence and Chronic Immunopathology in the Adult Central Nervous System following Coxsackievirus Infection during the Neonatal Period. Journal of Virology, 2009, 83, 9356-9369.	3.4	76
21	A novel method to establish microgliaâ€free astrocyte cultures: Comparison of matrix metalloproteinase expression profiles in pure cultures of astrocytes and microglia. Clia, 2008, 56, 1187-1198.	4.9	73
22	NAIP protects the nigrostriatal dopamine pathway in an intrastriatal 6â€OHDA rat model of Parkinson's disease. European Journal of Neuroscience, 2001, 14, 391-400.	2.6	72
23	Astrocyte Regulation of CNS Inflammation and Remyelination. Brain Sciences, 2013, 3, 1109-1127.	2.3	66
24	iPS-derived neural progenitor cells from PPMS patients reveal defect in myelin injury response. Experimental Neurology, 2017, 288, 114-121.	4.1	58
25	Attenuation of MPTP-induced neurotoxicity and behavioural impairment in NSE-XIAP transgenic mice. Neurobiology of Disease, 2003, 12, 150-161.	4.4	55
26	Cell and agonist-specific regulation of genes for matrix metalloproteinases and their tissue inhibitors by primary glial cells. Journal of Neurochemistry, 2006, 98, 812-823.	3.9	55
27	Extracellular vesicle fibrinogen induces encephalitogenic CD8+ T cells in a mouse model of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10488-10493.	7.1	54
28	Astrocyte Support for Oligodendrocyte Differentiation can be Conveyed via Extracellular Vesicles but Diminishes with Age. Scientific Reports, 2020, 10, 828.	3.3	53
29	Long-Term Improvement of Neurological Signs and Metabolic Dysfunction in a Mouse Model of Krabbe's Disease after Global Gene Therapy. Molecular Therapy, 2018, 26, 874-889.	8.2	50
30	TIMP-1 Attenuates the Development of Inflammatory Pain Through MMP-Dependent and Receptor-Mediated Cell Signaling Mechanisms. Frontiers in Molecular Neuroscience, 2019, 12, 220.	2.9	50
31	Extracellular matrix composition determines astrocyte responses to mechanical and inflammatory stimuli. Neuroscience Letters, 2015, 600, 104-109.	2.1	48
32	Stem Cells of the Aging Brain. Frontiers in Aging Neuroscience, 2020, 12, 247.	3.4	48
33	Amelioration of Coxsackievirus B3-Mediated Myocarditis by Inhibition of Tissue Inhibitors of Matrix Metalloproteinase-1. American Journal of Pathology, 2007, 171, 1762-1773.	3.8	35
34	A dual role for microglia in promoting tissue inhibitor of metalloproteinase (TIMP) expression in glial cells in response to neuroinflammatory stimuli. Journal of Neuroinflammation, 2011, 8, 61.	7.2	35
35	TIMP-1 Promotes Oligodendrocyte Differentiation Through Receptor-Mediated Signaling. Molecular Neurobiology, 2019, 56, 3380-3392.	4.0	35
36	Expression of the inhibitor of apoptosis protein family in multiple sclerosis reveals a potential immunomodulatory role during autoimmune mediated demyelination. Multiple Sclerosis Journal, 2008, 14, 577-594.	3.0	34

STEPHEN J CROCKER

#	Article	IF	CITATIONS
37	MMPâ€3 mediates psychosineâ€induced globoid cell formation: Implications for leukodystrophy pathology. Glia, 2013, 61, 765-777.	4.9	33
38	Coxsackievirus Preferentially Replicates and Induces Cytopathic Effects in Undifferentiated Neural Progenitor Cells. Journal of Virology, 2011, 85, 5718-5732.	3.4	31
39	Aberrant Production of Tenascin-C in Globoid Cell Leukodystrophy Alters Psychosine-Induced Microglial Functions. Journal of Neuropathology and Experimental Neurology, 2014, 73, 964-974.	1.7	30
40	A Refined Bead-Free Method to Identify Astrocytic Exosomes in Primary Glial Cultures and Blood Plasma. Frontiers in Neuroscience, 2017, 11, 335.	2.8	29
41	D1-receptor-related priming is attenuated by antisense-meditated `knockdown' of fosB expression. Molecular Brain Research, 1998, 53, 69-77.	2.3	27
42	Systemic TLR2 tolerance enhances central nervous system remyelination. Journal of Neuroinflammation, 2019, 16, 158.	7.2	24
43	A microglial hypothesis of globoid cell leukodystrophy pathology. Journal of Neuroscience Research, 2016, 94, 1049-1061.	2.9	24
44	Waning efficacy in a long-term AAV-mediated gene therapy study in the murine model of Krabbe disease. Molecular Therapy, 2021, 29, 1883-1902.	8.2	22
45	Effects of calpain inhibition on dopaminergic markers and motor function following intrastriatal 6-hydroxydopamine administration in rats. Neuroscience, 2009, 158, 558-569.	2.3	20
46	Stomatin Inhibits Pannexin-1-Mediated Whole-Cell Currents by Interacting with Its Carboxyl Terminal. PLoS ONE, 2012, 7, e39489.	2.5	18
47	Myelin oligodendrocyte glycoprotein peptide-induced experimental allergic encephalomyelitis and T cell responses are unaffected by immunoproteasome deficiency. Journal of Neuroimmunology, 2007, 192, 124-133.	2.3	14
48	Intravenous administration of human embryonic stem cell-derived neural precursor cells attenuates cuprizone-induced central nervous system (CNS) demyelination. Neuropathology and Applied Neurobiology, 2011, 37, 643-653.	3.2	14
49	Regulation of axotomy-induced dopaminergic neuron death and c-Jun phosphorylation by targeted inhibition of cdc42 or mixed lineage kinase. Journal of Neurochemistry, 2006, 96, 489-499.	3.9	13
50	TIMP-1 couples RhoK activation to IL-1Î ² -induced astrocyte responses. Neuroscience Letters, 2015, 609, 165-170.	2.1	12
51	Endogenous expression of inhibitor of apoptosis proteins in facial motoneurons of neonatal and adult rats following axotomy. Neuroscience, 2003, 117, 567-575.	2.3	11
52	Astrocyte-Derived Extracellular Vesicles (ADEVs): Deciphering their Influences in Aging. , 2021, 12, 1462.		11
53	The Effects of IL- $1\hat{l}^2$ on Astrocytes are Conveyed by Extracellular Vesicles and Influenced by Age. Neurochemical Research, 2020, 45, 694-707.	3.3	8
54	Extracellular matrix influences astrocytic extracellular vesicle function in wound repair. Brain Research, 2021, 1763, 147462.	2.2	8

STEPHEN J CROCKER

#	Article	IF	CITATIONS
55	Mesenchyme-specific loss of Dot1L histone methyltransferase leads to skeletal dysplasia phenotype in mice. Bone, 2021, 142, 115677.	2.9	7
56	The Pathogenic Sphingolipid Psychosine is Secreted in Extracellular Vesicles in the Brain of a Mouse Model of Krabbe Disease. ASN Neuro, 2022, 14, 175909142210878.	2.7	7
57	The Cellular Senescence Factor Extracellular HMGB1 Directly Inhibits Oligodendrocyte Progenitor Cell Differentiation and Impairs CNS Remyelination. Frontiers in Cellular Neuroscience, 2022, 16, 833186.	3.7	7
58	The Mosaic of Extracellular Matrix in the Central Nervous System as a Determinant of Glial Heterogeneity. , 2016, , .		6
59	Transition from identity to bioactivityâ€guided proteomics for biomarker discovery with focus on the PF2D platform. Proteomics - Clinical Applications, 2016, 10, 8-24.	1.6	5
60	Lipidomic analysis identifies age-disease-related changes and potential new biomarkers in brain-derived extracellular vesicles from metachromatic leukodystrophy mice. Lipids in Health and Disease, 2022, 21, 32.	3.0	5
61	An In Vitro Model for the Study of Cellular Pathophysiology in Globoid Cell Leukodystrophy. Journal of Visualized Experiments, 2014, , e51903.	0.3	2
62	Therapeutic opportunities for targeting cellular senescence in progressive multiple sclerosis. Current Opinion in Pharmacology, 2022, 63, 102184.	3.5	2
63	<scp>Cuprizoneâ€mediated</scp> demyelination reversibly degrades voiding behavior in mice while sparing brainstem reflex. Journal of Neuroscience Research, 2022, 100, 1707-1720.	2.9	2
64	Calpain Proteolysis and the Etiology of Parkinson's Disease: An Emerging Hypothesis. , 2005, , 25-61.		1
65	Effects of CNS Demyelination and Myelin Recovery on Urinary Physiology. Innovation in Aging, 2020, 4, 119-120.	0.1	0
66	Distinct profiles of cellular senescence-associated gene expression in the aged, diseased or injured central nervous system. Neuroscience Letters, 2022, 772, 136480.	2.1	0