Peng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/934985/publications.pdf Version: 2024-02-01

DENC 7HANC

#	Article	IF	CITATIONS
1	Riemann solvers of a conserved high-order traffic flow model with discontinuous fluxes. Applied Mathematics and Computation, 2022, 413, 126648.	2.2	1
2	Steady-state solution of traffic flow on a simple road network. Journal of Hydrodynamics, 2021, 33, 950-957.	3.2	1
3	A macroscopic traffic flow model considering the velocity difference between adjacent vehicles on uphill and downhill slopes. Modern Physics Letters B, 2020, 34, 2050217.	1.9	12
4	Potential field cellular automata model for overcrowded pedestrian flow. Transportmetrica A: Transport Science, 2020, 16, 749-775.	2.0	12
5	A Predictive Continuum Dynamic User-Optimal Model for the Simultaneous Departure Time and Route Choice Problem in a Polycentric City. Transportation Science, 2018, 52, 1496-1508.	4.4	4
6	Solitary wave solution to a class of higher-order viscous traffic flow model. International Journal of Modern Physics B, 2017, 31, 1750099.	2.0	3
7	A Runge–Kutta discontinuous Galerkin scheme for hyperbolic conservation laws with discontinuous fluxes. Applied Mathematics and Computation, 2017, 292, 309-319.	2.2	9
8	Dynamic Continuum Model with Elastic Demand for a Polycentric Urban City. Transportation Science, 2017, 51, 931-945.	4.4	11
9	Perceived cost potential field cellular automata model with an aggregated force field for pedestrian dynamics. Transportation Research Part C: Emerging Technologies, 2014, 42, 200-210.	7.6	54
10	Solitary wave solutions to higher-order traffic flow model with large diffusion. Applied Mathematics and Mechanics (English Edition), 2014, 35, 167-176.	3.6	0
11	Discontinuous Galerkin finite element scheme for a conserved higher-order traffic flow model by exploring Riemann solvers. Applied Mathematics and Computation, 2014, 244, 567-576.	2.2	6
12	Steady-state traffic flow on a ring road with up- and down-slopes. Physica A: Statistical Mechanics and Its Applications, 2014, 403, 85-93.	2.6	13
13	Solitary wave solution to Aw-Rascle viscous model of traffic flow. Applied Mathematics and Mechanics (English Edition), 2013, 34, 523-528.	3.6	11
14	Potential field cellular automata model for pedestrian flow. Physical Review E, 2012, 85, 021119.	2.1	80
15	Phase-plane analysis of conserved higher-order traffic flow model. Applied Mathematics and Mechanics (English Edition), 2012, 33, 1505-1512.	3.6	11
16	Modeling and simulation of pedestrian flow through hydrodynamics. Procedia Engineering, 2012, 31, 1039-1044.	1.2	5
17	A semi-discrete model and its approach to a solution for a wide moving jam in traffic flow. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 456-463.	2.6	45
18	A dynamic traffic assignment model for a continuum transportation system. Transportation Research Part B: Methodological, 2011, 45, 343-363.	5.9	52

Peng Zhang

#	Article	IF	CITATIONS
19	High-Order Computational Scheme for a Dynamic Continuum Model for Bi-Directional Pedestrian Flows. Computer-Aided Civil and Infrastructure Engineering, 2011, 26, 298-310.	9.8	21
20	Numerical simulation of a continuum model for bi-directional pedestrian flow. Applied Mathematics and Computation, 2011, 218, 6135-6135.	2.2	8
21	Conservation form of Helbing's fluid dynamic traffic flow model. Applied Mathematics and Mechanics (English Edition), 2011, 32, 1109-1118.	3.6	4
22	A Number of Riemann Solvers for a Conserved Higher-Order Traffic Flow Model. , 2011, , .		4
23	A shock-fitting algorithm for the Lighthill–Whitham–Richards model on inhomogeneous highways. Transportmetrica, 2011, 7, 163-180.	1.8	6
24	A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow. Chinese Physics Letters, 2011, 28, 108901.	3.3	38
25	Empirical evidence for taxi customer-search model. Proceedings of the Institution of Civil Engineers: Transport, 2010, 163, 203-210.	0.6	21
26	A microscopic pedestrian-simulation model and its application to intersecting flows. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 515-526.	2.6	68
27	A higher-order macroscopic model for pedestrian flows. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 4623-4635.	2.6	108
28	Bidirectional Pedestrian Stream Model with Oblique Intersecting Angle. Journal of Transportation Engineering, 2010, 136, 234-242.	0.9	120
29	A note on the weighted essentially nonâ€oscillatory numerical scheme for a multiâ€class Lighthill–Whitham–Richards traffic flow model. Communications in Numerical Methods in Engineering, 2009, 25, 1120-1126.	1.3	7
30	Macroscopic modeling of laneâ€changing for twoâ€lane traffic flow. Journal of Advanced Transportation, 2009, 43, 245-273.	1.7	49
31	Kinetic description of bottleneck effects in traffic flow. Applied Mathematics and Mechanics (English) Tj ETQq1	0.78431	4 rgBT /Over
32	A reactive dynamic continuum user equilibrium model for bi-directional pedestrian flows. Acta Mathematica Scientia, 2009, 29, 1541-1555.	1.0	50
33	A conserved higher-order anisotropic traffic flow model: Description of equilibrium and non-equilibrium flows. Transportation Research Part B: Methodological, 2009, 43, 562-574.	5.9	60
34	An Aggregation Approach to Short-Term Traffic Flow Prediction. IEEE Transactions on Intelligent Transportation Systems, 2009, 10, 60-69.	8.0	271
35	A hybrid scheme for solving a multi-class traffic flow model with complex wave breaking. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 3816-3827.	6.6	25
36	Admissibility of a Wide Cluster Solution in "Anisotropic―Higher-Order Traffic Flow Models. SIAM Journal on Applied Mathematics, 2007, 68, 562-573.	1.8	28

Peng Zhang

#	Article	IF	CITATIONS
37	Nonlinear Analysis in the Aw–Rascle Anticipation Model of Traffic Flow. SIAM Journal on Applied Mathematics, 2007, 67, 605-618.	1.8	24
38	δ-mapping algorithm coupled with WENO reconstruction for nonlinear elasticity in heterogeneous media. Applied Numerical Mathematics, 2007, 57, 103-116.	2.1	6
39	Essence of conservation forms in the traveling wave solutions of higher-order traffic flow models. Physical Review E, 2006, 74, 026109.	2.1	64
40	A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway. Journal of Computational Physics, 2006, 212, 739-756.	3.8	76
41	Hyperbolicity and kinematic waves of a class of multi-population partial differential equations. European Journal of Applied Mathematics, 2006, 17, 171.	2.9	62
42	Hyperbolic conservation laws with space-dependent fluxes: II. General study of numerical fluxes. Journal of Computational and Applied Mathematics, 2005, 176, 105-129.	2.0	29
43	Generalization of Runge-Kutta discontinuous Galerkin method to LWR traffic flow model with inhomogeneous road conditions. Numerical Methods for Partial Differential Equations, 2005, 21, 80-88.	3.6	17
44	High-resolution numerical approximation of traffic flow problems with variable lanes and free-flow velocities. Physical Review E, 2005, 71, 056704.	2.1	37
45	δ-mapping algorithm and its application in traffic flow problems with inhomogeneities. Journal of Shanghai University, 2003, 7, 315-317.	0.1	2
46	Hyperbolic conservation laws with space-dependent flux: I. Characteristics theory and Riemann problem. Journal of Computational and Applied Mathematics, 2003, 156, 1-21.	2.0	25
47	Macroscopic Simulation of Pedestrian Flow through a Bottleneck. Applied Mechanics and Materials, 0, 97-98, 1168-1175.	0.2	3