Jannik N Andersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9349493/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of BET Inhibitor Bottlebrush Prodrugs with Superior Efficacy and Devoid of Systemic Toxicities. Journal of the American Chemical Society, 2021, 143, 4714-4724.	13.7	18
2	Cross-talk between chromatin acetylation and SUMOylation of tripartite motif–containing protein 24 (TRIM24) impacts cell adhesion. Journal of Biological Chemistry, 2018, 293, 7476-7485.	3.4	27
3	Reduction of liver fibrosis by rationally designed macromolecular telmisartan prodrugs. Nature Biomedical Engineering, 2018, 2, 822-830.	22.5	26
4	TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development. Oncotarget, 2017, 8, 863-882.	1.8	49
5	Development of a High-Throughput Gene Expression Screen for Modulators of RAS-MAPK Signaling in a Mutant RAS Cellular Context. Journal of Biomolecular Screening, 2016, 21, 989-997.	2.6	5
6	Structure-Guided Design of IACS-9571, a Selective High-Affinity Dual TRIM24-BRPF1 Bromodomain Inhibitor. Journal of Medicinal Chemistry, 2016, 59, 1440-1454.	6.4	124
7	Observed bromodomain flexibility reveals histone peptide- and small molecule ligand-compatible forms of ATAD2. Biochemical Journal, 2015, 466, 337-346.	3.7	34
8	Development of novel cellular histone-binding and chromatin-displacement assays for bromodomain drug discovery. Epigenetics and Chromatin, 2015, 8, 37.	3.9	32
9	The SMARCA2/4 ATPase Domain Surpasses the Bromodomain as a Drug Target in SWI/SNF-Mutant Cancers: Insights from cDNA Rescue and PFI-3 Inhibitor Studies. Cancer Research, 2015, 75, 3865-3878.	0.9	202
10	Abstract 4272: Applying TCGA data for breast cancer diagnostics and pathway analysis. , 2014, , .		1
11	Abstract 3714: Characterization of a selective focal adhesion kinase (FAK) inhibitor in a panel of glioblastoma cell lines identify rational drug-drug combination strategies. , 2012, , .		0
12	Conformation-Sensing Antibodies Stabilize the Oxidized Form of PTP1B and Inhibit Its Phosphatase Activity. Cell, 2011, 147, 185-198.	28.9	139
13	Cancer genomics: from discovery science to personalized medicine. Nature Medicine, 2011, 17, 297-303.	30.7	534
14	PDK1 Attenuation Fails to Prevent Tumor Formation in PTEN-Deficient Transgenic Mouse Models. Cancer Research, 2011, 71, 3052-3065.	0.9	30
15	Genetic and Pharmacological Inhibition of PDK1 in Cancer Cells. Journal of Biological Chemistry, 2011, 286, 6433-6448.	3.4	56
16	Identification of Direct Target Engagement Biomarkers for Kinase-Targeted Therapeutics. PLoS ONE, 2011, 6, e26459.	2.5	25
17	A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors. BMC Medical Genomics, 2010, 3, 26.	1.5	124
18	Pathway-Based Identification of Biomarkers for Targeted Therapeutics: Personalized Oncology with PI3K Pathway Inhibitors. Science Translational Medicine, 2010, 2, 43ra55.	12.4	141

JANNIK N ANDERSEN

#	Article	IF	CITATIONS
19	Discovery of PDK1 Kinase Inhibitors with a Novel Mechanism of Action by Ultrahigh Throughput Screening. Journal of Biological Chemistry, 2010, 285, 18838-18846.	3.4	45
20	Abstract 4953: Identification of direct target engagement biomarkers for kinase drug discovery using quantitative mass spectrometry: PDK1 case study. , 2010, , .		0
21	Abstract 5560: Biomarker Discovery and Pathway Mapping using Differential Phosphoprofiling of PI3K-Pathway Inhibitors: PRAS40 Correlates with AKT Activation, but not PTEN Expression in Lung and Breast Cancer. , 2010, , .		Ο
22	Abstract 4561: Quantitative phosphoproteomics of an AKT inhibitor in a PTEN-LOF breast model by label free phospho-dMS demonstrates modulation of protein transcription, protein translation, and motility. , 2010, , .		0
23	Development of High-Throughput TR-FRET and AlphaScreen® Assays for Identification of Potent Inhibitors of PDK1. Journal of Biomolecular Screening, 2009, 14, 1257-1262.	2.6	20
24	Sensitive multiplexed analysis of kinase activities and activity-based kinase identification. Nature Biotechnology, 2009, 27, 933-940.	17.5	99
25	Computational analysis of protein tyrosine phosphatases: practical guide to bioinformatics and data resources. Methods, 2005, 35, 90-114.	3.8	40
26	A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. FASEB Journal, 2004, 18, 8-30.	0.5	277
27	Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature, 2003, 423, 769-773.	27.8	866
28	Cellular Effects of Small Molecule PTP1B Inhibitors on Insulin Signalingâ€. Biochemistry, 2003, 42, 12792-12804.	2.5	107
29	Enzyme kinetic characterization of protein tyrosine phosphatases. Biochimie, 2003, 85, 527-534.	2.6	24
30	Structural and Evolutionary Relationships among Protein Tyrosine Phosphatase Domains. Molecular and Cellular Biology, 2001, 21, 7117-7136.	2.3	660
31	TYK2 and JAK2 Are Substrates of Protein-tyrosine Phosphatase 1B. Journal of Biological Chemistry, 2001, 276, 47771-47774.	3.4	379
32	Molecular Dynamics Simulations of Protein-Tyrosine Phosphatase 1B. II. Substrate-Enzyme Interactions and Dynamics. Biophysical Journal, 2000, 78, 2191-2200.	0.5	48
33	Molecular Basis for the Dephosphorylation of the Activation Segment of the Insulin Receptor by Protein Tyrosine Phosphatase 1B. Molecular Cell, 2000, 6, 1401-1412.	9.7	432
34	Molecular Dynamics Simulations of Protein-Tyrosine Phosphatase 1B. I. Ligand-Induced Changes in the Protein Motions. Biophysical Journal, 1999, 77, 505-515.	0.5	42