
Consuelo Anzilotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9349420/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resolving the polygenic aetiology of a late onset combined immune deficiency caused by NFKB1 haploinsufficiency and modified by PIK3R1 and TNFRSF13B variants. Clinical Immunology, 2022, 234, 108910.	1.4	3
2	An ontogenetic switch drives the positive and negative selection of B cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3718-3727.	3.3	22
3	An essential role for the Zn2+ transporter ZIP7 in B cell development. Nature Immunology, 2019, 20, 350-361.	7.0	92
4	Chest Complications in Patients with Primary Antibody Deficiency Syndromes (PADS). Rare Diseases of the Immune System, 2019, , 347-359.	0.1	0
5	Capturing resting T cells: the perils of PLL. Nature Immunology, 2018, 19, 203-205.	7.0	62
6	A homozygous variant disrupting the <i>PIGH</i> start-codon is associated with developmental delay, epilepsy, and microcephaly. Human Mutation, 2018, 39, 822-826.	1.1	18
7	Immune Checkpoints as Therapeutic Targets in Autoimmunity. Frontiers in Immunology, 2018, 9, 2306.	2.2	96
8	53BP1 cooperation with the REV7–shieldin complex underpins DNA structure-specific NHEJ. Nature, 2018, 560, 122-127.	13.7	222
9	Analysis of exome data for 4293 trios suggests GPI-anchor biogenesis defects are a rare cause of developmental disorders. European Journal of Human Genetics, 2017, 25, 669-679.	1.4	63
10	Themis2 lowers the threshold for B cell activation during positive selection. Nature Immunology, 2017, 18, 205-213.	7.0	21
11	Themis2: setting the threshold for B-cell selection. Cellular and Molecular Immunology, 2017, 14, 643-645.	4.8	5
12	Mutation of <i>Fnip1</i> is associated with B-cell deficiency, cardiomyopathy, and elevated AMPK activity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3706-15.	3.3	39
13	Key stages of bone marrow B-cell maturation are defective in patients with common variable immunodeficiency disorders. Journal of Allergy and Clinical Immunology, 2015, 136, 487-490.e2.	1.5	20
14	Mutations in <i>PIGY</i> : expanding the phenotype of inherited glycosylphosphatidylinositol deficiencies. Human Molecular Genetics, 2015, 24, 6146-6159.	1.4	64
15	Peptidylarginine deiminase 4 and citrullination in health and disease. Autoimmunity Reviews, 2010, 9, 158-160.	2.5	146
16	Serum and urinary levels of IL-18 and its inhibitor IL-18BP in systemic lupus erythematosus. European Cytokine Network, 2010, 21, 264-71.	1.1	60
17	ILâ€18 Activity in Systemic Lupus Erythematosus. Annals of the New York Academy of Sciences, 2009, 1173, 301-309.	1.8	60
18	Deiminated Epstein-Barr virus nuclear antigen 1 is a target of anti–citrullinated protein antibodies in rheumatoid arthritis. Arthritis and Rheumatism. 2006. 54. 733-741.	6.7	116

CONSUELO ANZILOTTI

#	Article	IF	CITATIONS
19	Antibodies to viral citrullinated peptide in rheumatoid arthritis. Journal of Rheumatology, 2006, 33, 647-51.	1.0	48
20	Autoantibodies and Nephritis: Different Roads May Lead to Rome. , 2005, , 165-180.		0
21	A Deiminated Viral Peptide to Detect Antibodies in Rheumatoid Arthritis. Annals of the New York Academy of Sciences, 2005, 1050, 243-249.	1.8	11
22	Autoantibodies in Systemic Lupus: Quite a Lot or Just a Few?. Current Rheumatology Reviews, 2005, 1, 277-282.	0.4	0