
Inmaculada Pulido-Calvo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9349196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pagellus genus catches time series in the FAO Major Fishing Areas 27 and 34: Analysis of fishery behaviour. Marine Policy, 2022, 136, 104912.	1.5	1
2	A Computer Program to Support the Selection of Turbines to Recover Unused Energy at Hydraulic Networks. Water (Switzerland), 2021, 13, 467.	1.2	6
3	Performance Evaluation of Helical Separators Applied to Olive Oil–Water Two-Phase Flows at Low Reynolds Numbers. Water (Switzerland), 2021, 13, 911.	1.2	0
4	Energy Recovery in Pressurized Hydraulic Networks. Water Resources Management, 2021, 35, 1977-1990.	1.9	12
5	Drought and Ecological Flows in the Lower Guadiana River Basin (Southwest Iberian Peninsula). Water (Switzerland), 2020, 12, 677.	1.2	7
6	Improving the interpretability of the effects of environmental factors on abundance of fish stocks. Ecological Indicators, 2020, 117, 106533.	2.6	5
7	Environment or catches? Assessment of the decline in blackspot seabream (Pagellus bogaraveo) abundance in the Strait of Gibraltar. Journal of Marine Systems, 2019, 190, 15-24.	0.9	8
8	Analysis and viability of microturbines in hydraulic networks: a case study. Journal of Water Supply: Research and Technology - AQUA, 2019, 68, 474-482.	0.6	8
9	Analysis, evaluation and monitoring of the characteristic frequencies of pneumatic drive unit and its bearing through their corresponding frequency spectra and spectral density. Eksploatacja I Niezawodnosc, 2019, 21, 585-591.	1.1	4
10	Modeling water vapor impacts on the solar irradiance reaching the receiver of a solar tower plant by means of artificial neural networks. Solar Energy, 2018, 169, 34-39.	2.9	27
11	Is it possible to differentiate between environmental and fishery effects on abundanceâ€biomass variation? A case study of blackspot seabream (<i>Pagellus bogaraveo</i>) in the Strait of Gibraltar. Fisheries Oceanography, 2017, 26, 455-475.	0.9	8
12	VISIBILITY ESTIMATES FROM ATMOSPHERIC AND RADIOMETRIC VARIABLES USING ARTIFICIAL NEURAL NETWORKS. WIT Transactions on Ecology and the Environment, 2017, , .	0.0	2
13	Is the Atlantic surface temperature a good proxy for forecasting the recruitment of European eel in the Guadalquivir estuary?. Progress in Oceanography, 2015, 130, 112-124.	1.5	10
14	Previsão de secas na primavera em Portugal Continental com base em indicadores climáticos de larga escala. IngenierÃa Del Agua, 2015, 19, 211.	0.2	2
15	Assisted management of water exchange in traditional semi-intensive aquaculture ponds. Computers and Electronics in Agriculture, 2014, 101, 128-134.	3.7	6
16	Deriving data mining and regression based water-salinity production functions for spring wheat (Triticum aestivum). Computers and Electronics in Agriculture, 2014, 101, 68-75.	3.7	17
17	Spring drought prediction based on winter NAO and global SST in Portugal. Hydrological Processes, 2014, 28, 1009-1024.	1.1	36
18	Visión del regadÃo. IngenierÃa Del Agua, 2014, 18, 38.	0.2	4

#	Article	IF	CITATIONS
19	Dimensionality reduction in drought modelling. Hydrological Processes, 2013, 27, 1399-1410.	1.1	8
20	Consistency of fuzzy rules in an ecological context. Ecological Modelling, 2013, 251, 187-198.	1.2	4
21	Modeling inflow rates for the water exchange management in semi-intensive aquaculture ponds. Aquacultural Engineering, 2012, 48, 19-30.	1.4	16
22	Heuristic Modelling of the Water Resources Management in the Guadalquivir River Basin, Southern Spain. Water Resources Management, 2012, 26, 185-209.	1.9	20
23	Irrigation Water Demand Forecasting Using Wavelet Transforms and Artificial Intelligence. , 2011, , .		0
24	Regional Frequency Analysis of Droughts in Portugal. Water Resources Management, 2011, 25, 3537-3558.	1.9	102
25	Anchovy (Engraulis ringens) and sardine (Sardinops sagax) abundance forecast off northern Chile: A multivariate ecosystemic neural network approach. Progress in Oceanography, 2010, 87, 242-250.	1.5	36
26	Spatial and temporal variability of droughts in Portugal. Water Resources Research, 2010, 46, .	1.7	227
27	Acoustic identification of small pelagic fish species in Chile using support vector machines and neural networks. Fisheries Research, 2010, 102, 115-122.	0.9	42
28	Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosystems Engineering, 2009, 102, 202-218.	1.9	117
29	Pacific sardine (Sardinops sagax, Jenyns 1842) landings prediction. A neural network ecosystemic approach. Fisheries Research, 2009, 100, 116-125.	0.9	34
30	Pipes size selection of water distribution systems of fishfarms. Aquacultural Engineering, 2008, 39, 43-52.	1.4	5
31	Regional Analysis of Daily Precipitation Stochastic Model Parameters Using Artificial Neural Networks. , 2008, , .		0
32	Monthly catch forecasting of anchovy Engraulis ringens in the north area of Chile: Non-linear univariate approach. Fisheries Research, 2007, 86, 188-200.	0.9	67
33	Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. Journal of Hydrology, 2007, 332, 1-15.	2.3	90
34	Water Temperature Regimen Analysis of Intensive Fishfarms associated with Cooling Effluents from Power Plants. Biosystems Engineering, 2007, 96, 581-591.	1.9	6
35	Linear regressions and neural approaches to water demand forecasting in irrigation districts with telemetry systems. Biosystems Engineering, 2007, 97, 283-293.	1.9	73
36	The present environmental scenario of the Nador Lagoon (Morocco). Environmental Research, 2006, 102, 215-229.	3.7	98

#	Article	IF	CITATIONS
37	Optimal design of pumping stations of inland intensive fishfarms. Aquacultural Engineering, 2006, 35, 283-291.	1.4	9
38	SEDPA, an expert system for disease diagnosis in eel rearing systems. Aquacultural Engineering, 2005, 33, 110-125.	1.4	16
39	Comparison between traditional methods and artificial neural networks for ammonia concentration forecasting in an eel (Anguilla anguilla L.) intensive rearing system. Aquacultural Engineering, 2004, 31, 183-203.	1.4	39
40	Water Delivery System Planning Considering Irrigation Simultaneity. Journal of Irrigation and Drainage Engineering - ASCE, 2003, 129, 247-255.	0.6	41
41	Demand Forecasting for Irrigation Water Distribution Systems. Journal of Irrigation and Drainage Engineering - ASCE, 2003, 129, 422-431.	0.6	55
42	Gonadosomatic index estimates of an introduced pumpkinseed (Lepomis gibbosus) population in a Mediterranean stream, using computational neural networks. Aquatic Sciences, 2000, 62, 350-363.	0.6	22
43	Historical Evolution of the Reconstructed Catches of Four Species of the Pagellus Genus for Two Large Marine Ecosystems. , 0, , .		0