
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9348847/publications.pdf Version: 2024-02-01

Διι Υπ ΜΑΞ

#	Article	IF	CITATIONS
1	Therapeutic value of tafamidis in patients with wild-type transthyretin amyloidosis (ATTRwt) with cardiomyopathy based on cardiovascular magnetic resonance (CMR) imaging. Clinical Research in Cardiology, 2023, 112, 353-362.	1.5	8
2	Hybrid CMR- and FDG-PET-Imaging Gives New Insights Into the Relationship of Myocardial Metabolic Activity and Fibrosis in Patients With Becker Muscular Dystrophy. Frontiers in Cardiovascular Medicine, 2022, 9, 793972.	1.1	0
3	Cardiovascular Magnetic Resonance-Guided Radiofrequency Ablation. JACC: Clinical Electrophysiology, 2022, 8, 261-274.	1.3	3
4	Sustained Impairment in Cardiopulmonary Exercise Capacity Testing in Patients after COVID-19: A Single Center Experience. Canadian Respiratory Journal, 2022, 2022, 1-11.	0.8	13
5	Interpretation of CMR-Based Mapping Findings in Cardiac Amyloidosis. JACC: Cardiovascular Imaging, 2022, 15, 604-606.	2.3	1
6	Serial Cardiovascular Magnetic Resonance Studies Prior to and After mRNA-Based COVID-19 Booster Vaccination to Assess Booster-Associated Cardiac Effects. Frontiers in Cardiovascular Medicine, 2022, 9, 877183.	1.1	2
7	Diagnostic value of the novel CMR parameter "myocardial transit-time―(MyoTT) for the assessment of microvascular changes in cardiac amyloidosis and hypertrophic cardiomyopathy. Clinical Research in Cardiology, 2021, 110, 136-145.	1.5	11
8	Diagnostic value of cardiovascular magnetic resonance in comparison to endomyocardial biopsy in cardiac amyloidosis: a multi-centre study. Clinical Research in Cardiology, 2021, 110, 555-568.	1.5	33
9	Diagnosis and treatment of cardiac amyloidosis: position statement of the German Cardiac Society (DGK). Clinical Research in Cardiology, 2021, 110, 479-506.	1.5	57
10	CMR-based T1-mapping offers superior diagnostic value compared to longitudinal strain-based assessment of relative apical sparing in cardiac amyloidosis. Scientific Reports, 2021, 11, 15521.	1.6	18
11	Occurrence of acute infarct-like myocarditis following COVID-19 vaccination: just an accidental co-incidence or rather vaccination-associated autoimmune myocarditis?. Clinical Research in Cardiology, 2021, 110, 1850-1854.	1.5	28
12	A cardiovascular magnetic resonance imaging-based pilot study to assess coronary microvascular disease in COVID-19 patients. Scientific Reports, 2021, 11, 15667.	1.6	31
13	Diagnosis of Cardiac Involvement in Amyloid A Amyloidosis by Cardiovascular Magnetic Resonance Imaging. Frontiers in Cardiovascular Medicine, 2021, 8, 757642.	1.1	4
14	Genome silencer therapy leading to â€regression' of cardiac amyloid load on cardiovascular magnetic resonance: a case report. European Heart Journal - Case Reports, 2021, 5, ytab415.	0.3	1
15	"Myocardial transit-time―(MyoTT): a novel and easy-to-perform CMR parameter to assess microvascular disease. Clinical Research in Cardiology, 2020, 109, 488-497.	1.5	4
16	Clinical experience regarding safety and diagnostic value of cardiovascular magnetic resonance in patients with a subcutaneous implanted cardioverter/defibrillator (S-ICD) at 1.5 T. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 35.	1.6	11
17	Immune Checkpoint Inhibitor-Associated Myocarditis. JACC: Case Reports, 2020, 2, 630-635.	0.3	6
18	Regression of cardiac amyloid load documented by cardiovascular magnetic resonance in a patient with hereditary amyloidosis. Clinical Research in Cardiology, 2020, 109, 949-956.	1.5	5

#	Article	IF	CITATIONS
19	Mitochondrial Heart Involvement. , 2019, , 257-279.		1
20	Functionalization of Clinically Approved MRI Contrast Agents for the Delivery of VEGF. Bioconjugate Chemistry, 2019, 30, 1042-1047.	1.8	10
21	Non-invasive evaluation of the relationship between electrical and structural cardiac abnormalities in patients with myotonic dystrophy type 1. Clinical Research in Cardiology, 2019, 108, 857-867.	1.5	17
22	Introduction of a CMR-conditional cardiac phantom simulating cardiac anatomy and function and enabling training of interventional CMR procedures. Scientific Reports, 2019, 9, 19852.	1.6	2
23	The "Native T1 Versus Extracellular Volume Fraction Paradox―in CardiacÂAmyloidosis. JACC: Cardiovascular Imaging, 2019, 12, 820-822.	2.3	10
24	Identification of Cardiomyopathy-Associated Circulating miRNA Biomarkers in Muscular Dystrophy Female Carriers Using a Complementary Cardiac Imaging and Plasma Profiling Approach. Frontiers in Physiology, 2018, 9, 1770.	1.3	22
25	Reduced global myocardial perfusion reserve in DCM and HCM patients assessed by CMR-based velocity-encoded coronary sinus flow measurements and first-pass perfusion imaging. Clinical Research in Cardiology, 2018, 107, 1062-1070.	1.5	15
26	Novel CMR techniques enable detection of even mild autoimmune myocarditis in a patient with systemic lupus erythematosus. Clinical Research in Cardiology, 2017, 106, 560-563.	1.5	6
27	Pattern and prognostic value of cardiac involvement in patients with late-onset pompe disease: a comprehensive cardiovascular magnetic resonance approach. Journal of Cardiovascular Magnetic Resonance, 2017, 18, 91.	1.6	27
28	Diagnostic value of global myocardial perfusion reserve assessment based on coronary sinus flow measurements using cardiovascular magnetic resonance in addition to myocardial stress perfusion imaging. European Heart Journal Cardiovascular Imaging, 2017, 18, 851-859.	0.5	19
29	Contrastingly small iron oxides. Nature Biomedical Engineering, 2017, 1, 623-624.	11.6	2
30	Visualising inflammation after myocardial infarction with the use of iron oxide nanoparticles. Heart, 2017, 103, 1479-1480.	1.2	10
31	Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now?. International Journal of Nanomedicine, 2016, Volume 11, 3191-3203.	3.3	54
32	The "spastic―coronary plaque: dynamic deformation of an atheromatous plaque demonstrated by optical coherence tomography. Clinical Research in Cardiology, 2016, 105, 636-638.	1.5	1
33	An MR Spectroscopy-Based Approach to Lean Versus Obese Diabetic Patients â^—. Journal of the American College of Cardiology, 2016, 68, 64-66.	1.2	0
34	Identification of cardiomyopathy associated circulating miRNA biomarkers in patients with muscular dystrophy using a complementary cardiovascular magnetic resonance and plasma profiling approach. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 25.	1.6	27
35	Cardiac involvement in female Duchenne and Becker muscular dystrophy carriers in comparison to their first-degree male relatives: a comparative cardiovascular magnetic resonance study. European Heart Journal Cardiovascular Imaging, 2016, 17, 326-333.	0.5	73

Role of Cardiovascular Magnetic Resonance Imaging in Heart Failure. , 2016, , 149-181.

1

#	Article	IF	CITATIONS
37	Characteristic cardiac phenotypes are detected by cardiovascular magnetic resonance in patients with different clinical phenotypes and genotypes of mitochondrial myopathy. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 40.	1.6	57
38	The diagnostic value of iron oxide nanoparticles for imaging of myocardial inflammation – quo vadis?. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 54.	1.6	27
39	Diagnostic value of CMR in young patients with clinically suspected acute myocarditis is determined by cardiac enzymes. Clinical Research in Cardiology, 2015, 104, 154-163.	1.5	11
40	Left ventricular systolic function and the pattern of late-gadolinium-enhancement independently and additively predict adverse cardiac events in muscular dystrophy patients. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 81.	1.6	87
41	Myocardial fibrosis imaging based on T1-mapping and extracellular volume fraction (ECV) measurement in muscular dystrophy patients: diagnostic value compared with conventional late gadolinium enhancement (LGE) imaging. European Heart Journal Cardiovascular Imaging, 2014, 15, 1004-1012.	0.5	78
42	Cause of Cardiac Disease in a Female Carrier of Duchenne Muscular Dystrophy. Circulation, 2014, 129, e482-4.	1.6	13
43	Positive effect of intravenous iron-oxide administration on left ventricular remodelling in patients with acute ST-elevation myocardial infarction – A cardiovascular magnetic resonance (CMR) study. International Journal of Cardiology, 2014, 173, 184-189.	0.8	46
44	Magnetic resonance imaging (MRI) of inflamed myocardium using iron oxide nanoparticles in patients with acute myocardial infarction — Preliminary results. International Journal of Cardiology, 2013, 163, 175-182.	0.8	38
45	Role of cardiovascular magnetic resonance imaging (CMR) in the diagnosis of acute and chronic myocarditis. Heart Failure Reviews, 2013, 18, 747-760.	1.7	60
46	Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach. European Heart Journal, 2013, 34, 462-475.	1.0	133
47	Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. European Heart Journal, 2013, 34, 2636-2648.	1.0	2,436
48	Angina pectoris in patients with normal coronary angiograms: current pathophysiological concepts and therapeutic options. Heart, 2012, 98, 1020-1029.	1.2	21
49	Cardiac involvement in muscular dystrophy: advances in diagnosis and therapy. Heart, 2012, 98, 420-429.	1.2	48
50	First Multiparametric Cardiovascular Magnetic Resonance Study Using Ultrasmall Superparamagnetic Iron Oxide Nanoparticles in a Patient With Acute Myocardial Infarction. Circulation, 2012, 126, 1932-1934.	1.6	27
51	Republished Education in Heart: Cardiac involvement in muscular dystrophy: advances in diagnosis and therapy. Postgraduate Medical Journal, 2012, 88, 290-299.	0.9	5
52	Update on Myocarditis. Journal of the American College of Cardiology, 2012, 59, 779-792.	1.2	758
53	Cardiovascular magnetic resonance imaging (CMR) reveals characteristic pattern of myocardial damage in patients with mitochondrial myopathy. Clinical Research in Cardiology, 2012, 101, 255-261.	1.5	24
54	CMR gives clue to "ragged red fibers―in the heart in a patient with mitochondrial myopathy. International Journal of Cardiology, 2011, 149, e24-e27.	0.8	15

#	Article	IF	CITATIONS
55	Exercise-Induced Spastic Coronary Artery Occlusion at the Site of a Moderate Stenosis. Circulation, 2010, 122, e570-4.	1.6	20
56	Comparative Evaluation of Left and Right Ventricular Endomyocardial Biopsy. Circulation, 2010, 122, 900-909.	1.6	377
57	Diagnostic synergy of non-invasive cardiovascular magnetic resonance and invasive endomyocardial biopsy in troponin-positive patients without coronary artery disease. European Heart Journal, 2009, 30, 2869-2879.	1.0	216
58	Cardiovascular magnetic resonance reveals similar damage to the heart of patients with becker and limbâ€girdle muscular dystrophy but no cardiac symptoms. Journal of Magnetic Resonance Imaging, 2009, 30, 876-877.	1.9	24
59	Imaging in inflammatory heart disease: from the past to current clinical practice. Hellenic Journal of Cardiology, 2009, 50, 449-60.	0.4	8
60	Cardiac involvement in patients with Becker muscular dystrophy: new diagnostic and pathophysiological insights by a CMR approach. Journal of Cardiovascular Magnetic Resonance, 2008, 10, 50.	1.6	110
61	Cardiovascular Magnetic Resonance in Clinically Suspected Cardiac Amyloidosis. Journal of the American College of Cardiology, 2008, 51, 1022-1030.	1.2	395
62	Coronary vasospasm as the underlying cause for chest pain in patients with PVB19 myocarditis. Heart, 2008, 94, 1456-1463.	1.2	149