Stephane Daniele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9348629/publications.pdf Version: 2024-02-01

		147566	243296
129	2,724	31	44
papers	citations	h-index	g-index
137	137	137	2965
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Metal–Organic Derivatives with Fluorinated Ligands as Precursors for Inorganic Nanomaterials. Chemical Reviews, 2015, 115, 8379-8448.	23.0	150
2	Metal 2-ethylhexanoates and related compounds as useful precursors in materials science. Chemical Society Reviews, 2007, 36, 1770.	18.7	77
3	Single-Source Precursors of Lead Titanate: Synthesis, Molecular Structure and Reactivity of Pb2Ti2(.mu.4-O)(.mu.3-O-i-Pr)2(.muO-i-Pr)4(O-i-Pr)4. Inorganic Chemistry, 1995, 34, 628-632.	1.9	72
4	Low temperature and aqueous sol–gel deposit of photocatalytic active nanoparticulate TiO2. Journal of Materials Chemistry, 2003, 13, 342-346.	6.7	72
5	Practical oxidation of sulfides to sulfones by H2O2 catalysed by titanium catalyst. Green Chemistry, 2008, 10, 447.	4.6	71
6	Novel Barium–Organic Incorporated Iodometalates: Do They Have Template Properties for Constructing Rare Heterotrimetallic Hybrids?. Inorganic Chemistry, 2014, 53, 11721-11731.	1.9	57
7	Reactions of metal iodides as a simple route to heterometallics: synthesis, structural transformations, thermal and luminescent properties of novel hybrid iodoargentate derivatives templated by [YL8]3+ or [YL7]3+ cations (L = DMF or DMSO). Dalton Transactions, 2008, , 6296.	1.6	54
8	Novel heterometal-organic complexes as first single source precursors for up-converting NaY(Ln)F4(Ln = Yb, Er, Tm) nanomaterials. Dalton Transactions, 2012, 41, 1490-1502.	1.6	52
9	Reduced {001}-TiO _{2â^*x} photocatalysts: noble-metal-free CO ₂ photoreduction for selective CH ₄ evolution. Physical Chemistry Chemical Physics, 2017, 19, 13875-13881.	1.3	50
10	Synthesis and Characterization of Ruthenium Terpyridine Dioxolene Complexes: Resonance Equilibrium between Rulll–Catechol and Rull–Semiquinone Forms. Bulletin of the Chemical Society of Japan, 1998, 71, 867-875.	2.0	48
11	Solid- and Solution Phase Transformations in Novel Hybrid Iodoplumbate Derivatives Templated by Solvated Yttrium Complexes. Inorganic Chemistry, 2008, 47, 9333-9343.	1.9	48
12	Single-source Precursors for BaTiO3: Synthesis and Characterization of .betaDiketonato Alkoxides and Molecular Structure of Ba2Ti2(thd)4(.mu.3-OEt)2(.muOEt)4(OEt)2(EtOH)2. Chemistry of Materials, 1994, 6, 2336-2342.	3.2	46
13	Praseodymium alkoxide chemistry: synthesis and molecular structure of [Pr4(μ4-O)2(μ3, η2-OR)2 (μ, η2-OR)	4(μ,) Tj E 1.0	TQq1 1 0.7 46
14	Synthesis and structures of crystalline dilithium diamides and aminolithium amides derived from N,Nââ,¬Â²-disubstituted 1,2-diaminobenzenes or 1,8-diaminonaphthalene. Dalton Transactions RSC, 2001, , 3179-3188.	2.3	46
15	Amorphization in Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 11133-11140.	1.5	46
16	Direct Synthesis of Hexagonal NaGdF ₄ Nanocrystals from a Single‣ource Precursor: Upconverting NaGdF ₄ :Yb ³⁺ ,Tm ³⁺ and Its Composites with TiO ₂ for Nearâ€IRâ€Driven Photocatalysis. Chemistry - an Asian Journal, 2014, 9, 2415-2421.	1.7	45
17	Heterometallic Na–Y(Ln) trifluoroacetate diglyme complexes as novel single-source precursors for upconverting NaYF4 nanocrystals co-doped with Yb and Er/Tm ions. Chemical Communications, 2010, 46, 3756.	2.2	44
18	Thermal condensation of trinuclear lanthanide butoxides. Molecular structure of La5(μ5-O)(μ3-OtBu)4(μ-OtBu)4(OtBu)5. Inorganic Chemistry Communication, 2000, 3, 218-220.	1.8	43

#	Article	IF	CITATIONS
19	Pressure-induced polyamorphism inTiO2nanoparticles. Physical Review B, 2010, 82, .	1.1	43
20	Lanthanide complexes in hybrid halometallate materials: interconversion between a novel 2D microporous framework and a 1D zigzag chain structure of iodoargentates templated by octakis-solvated terbium(III) cation. Dalton Transactions, 2009, , 4954.	1.6	42
21	Solution routes to lead titanate: synthesis, molecular structure and reactivity of the Pb–Ti and Pb–Zr species formed between various lead oxide precursors and titanium or zirconium alkoxides. Molecular structure of Pb2Ti2(μ4 -O)(OAc)2(OPri)8 and of PbZr3(μ4-O)(OAc)2(OPri) 10. Journal of Materials Chemistry, 1997, 7, 753-762.	6.7	41
22	Combination of two catalytic sites in a novel nanocrystalline TiO2–iron tetrasulfophthalocyanine material provides better catalytic properties. New Journal of Chemistry, 2005, 29, 1245.	1.4	41
23	Crystal-to-crystal transformations in heterometallic yttrium(<scp>iii</scp>)–copper(<scp>i</scp>) iodide derivatives in a confined solvent-free environment: Influence of solvated yttrium cations on the nuclearity and dimensionality of iodocuprate clusters. Dalton Transactions, 2008, , 620-630.	1.6	41
24	Synthesis and molecular structure of [Sm4Ti(μ5-O)(μ3-OR)2(μ-OR)6(OR)6] (R = Pri): A novel framework for heteronuclear alkoxides with a 1:4 stoichiometry. Polyhedron, 1994, 13, 927-932.	1.0	38
25	Photocatalytic degradation and mineralization of a malodorous compound (dimethyldisulfide) using a continuous flow reactor. Catalysis Today, 2007, 122, 160-167.	2.2	38
26	Aerobic methylcyclohexane-promoted epoxidation of stilbene over gold nanoparticles supported on Gd-doped titania. Dalton Transactions, 2010, 39, 8457.	1.6	38
27	Heterometallic, Hybrid, Heavy Main-Group Iodometallates Containing Lanthanide Complexes: Template Synthesis, Structures, Thermal, Optical, Luminescent and Magnetic Properties. European Journal of Inorganic Chemistry, 2012, 2012, 2749-2758.	1.0	36
28	Intense visible emission from ZnO/PAAX (X = H or Na) nanocomposite synthesized via a simple and scalable sol-gel method. Scientific Reports, 2016, 6, 23557.	1.6	35
29	Synthesis, structures and catalytic properties of chelating N,N ′-bis(silylated) 1,2-benzenediamidozirconium(IV) chlorides [and a titanium(IV) analogue] and dimethylamides â€. Dalton Transactions RSC, 2001, , 13-19.	2.3	33
30	Synthesis of <i>para</i> â€Amino Benzoic Acid–TiO ₂ Hybrid Nanostructures of Controlled Functionality by an Aqueous Oneâ€6tep Process. European Journal of Inorganic Chemistry, 2008, 2008, 980-987.	1.0	33
31	A molecular precursor approach to monodisperse scintillating CeF3 nanocrystals. Dalton Transactions, 2013, 42, 12633.	1.6	32
32	Molecular Engineering of Metal Alkoxides for Solution Phase Synthesis of Highâ€Tech Metal Oxide Nanomaterials. Chemistry - A European Journal, 2020, 26, 9292-9303.	1.7	32
33	Homoleptic gallium(iii) and indium(iii) aminoalkoxides as precursors for sol–gel routes to metal oxide nanomaterials. Dalton Transactions, 2009, , 2569.	1.6	31
34	Dimethyl selenide complexes of copper, gallium and indium halides as potential precursors for selenium-containing chalcopyrite semiconducting materials. Polyhedron, 2010, 29, 500-506.	1.0	31
35	Molecular structures of volatile Ce(IV) tetrafluoroisopropoxide complexes with TMEDA and diglyme. CVD experiments. Polyhedron, 2002, 21, 1985-1990.	1.0	30
36	Novel Heteroleptic Heterobimetallic Alkoxide Complexes as Facile Single-Source Precursors for Ta5+Doped TiO2â^'SnO2Nanoparticles. Inorganic Chemistry, 2010, 49, 11184-11189.	1.9	30

#	Article	IF	CITATIONS
37	Interfacial study of surface-modified ZrO2 nanoparticles with thioctic acid for the selective recovery of palladium and gold from electronic industrial wastewater. Separation and Purification Technology, 2020, 237, 116353.	3.9	30
38	Building of lanthanide oxoalkoxides: Synthesis and molecular structure of [Gd6(μ4-O)(μ3,η2-OR)4(R,η2-OR)6(μν2-OR)2(OR)4] (R = C2H4OMe). Polyhedron, 1996, 15, 1063-1070.	1.0	29
39	Rare example of a polynuclear heterometallic yttrium(III)–copper(I) iodide cluster with a [Y6(μ6-O)(μ3-OH)8]8+ core structure showing single crystal-to-single crystal transformation. CrystEngComm, 2008, 10, 814.	1.3	29
40	Interface Energy Impact on Phase Transitions: The Case of TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 22286-22291.	1.5	29
41	Design of hybrid titania nanocrystallites as supports for gold catalysts. Chemical Communications, 2009, , 3116.	2.2	27
42	A Single Source Precursor Route to Group 13 Homo―and Heterometallic Oxides as Highly Active Supports for Gold atalyzed Aerobic Epoxidation of <i>trans</i> â€Stilbene. European Journal of Inorganic Chemistry, 2013, 2013, 500-510.	1.0	26
43	A Facile Molecular Precursorâ€based Synthesis of Ag ₂ Se Nanoparticles and Its Composites with TiO ₂ for Enhanced Photocatalytic Activity. Chemistry - an Asian Journal, 2016, 11, 1658-1663.	1.7	26
44	Preparation of NiCoP-decorated g-C3N4 as an efficient photocatalyst for H2O2 production. Research on Chemical Intermediates, 2019, 45, 5907-5917.	1.3	26
45	Functional homo- and heterometallic alkoxides as precursors for sol–gel routes to transparent ZnGa2O4coatings. Journal of Materials Chemistry, 2002, 12, 2519-2524.	6.7	25
46	Zn-Assisted TiO _{2–<i>x</i>} Photocatalyst with Efficient Charge Separation for Enhanced Photocatalytic Activities. Journal of Physical Chemistry C, 2017, 121, 17068-17076.	1.5	24
47	Internalisation of hybrid titanium dioxide/para-amino benzoic acid nanoparticles in human dendritic cells did not induce toxicity and changes in their functions. Toxicology Letters, 2010, 199, 34-42.	0.4	23
48	Aminoalkoxo-supported heteroleptic hexanuclear gallium(iii) wheel as a synthon for group 13 heterometallics: A rare sol–gel precursor for mixed Al–Ga oxide as support for gold catalysts. Dalton Transactions, 2010, 39, 7440.	1.6	23
49	Pressure-Induced Disordering in SnO ₂ Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 15463-15471.	1.5	23
50	Activation of lanthanide acetates via heterometallic alkoxides: Synthesis and molecular structure of Gd2Zr6(μ4-O)2(μ-OAc)6 (μ-OPri)10(OPri)10. Polyhedron, 1993, 12, 2091-2096.	1.0	22
51	Thermal dehydration of Y(TFA)3(H2O)3: Synthesis and molecular structures of [Y(μ,η1:η1-TFA)3(THF)(H2O)]1â^žÂ·THF and [Y4(μ3-OH)4(μ,η1:η1-TFA)6(η1-TFA)(η2-TFA)(THF)3(DMSO)(H2C (TFA=trifluoroacetate). Inorganic Chemistry Communication, 2009, 12, 97-100.))]ıÂ 86THF	22
52	Influence of Na ⁺ ion doping on the phase change and upconversion emissions of the GdF ₃ : Yb ³⁺ , Tm ³⁺ nanocrystals obtained from the designed molecular precursors. RSC Advances, 2015, 5, 100535-100545.	1.7	21
53	Solid-state structural transformations in metal organic-inorganic hybrids constructed from terbium(iii) complexes and iodocuprate clusters. CrystEngComm, 2012, 14, 3894.	1.3	20
54	A convenient and quantitative route to Sn(<scp>iv</scp>)–M [M = Ti(<scp>iv</scp>), Nb(<scp>v</scp>), Ta(<scp>v</scp>)] heterobimetallic precursors for dense mixed-metal oxide ceramics. Dalton Transactions, 2015, 44, 6848-6862.	1.6	18

#	Article	IF	CITATIONS
55	Structural isomers of iron(<scp>iii</scp>) N-methyl diethanolaminate as sol–gel precursors for iron-based oxide nanomaterials. RSC Advances, 2016, 6, 1738-1743.	1.7	17
56	Modification of acid–base properties of TiO2 by Nb and Mg dopants: Influence on the activity of Pd–Cu/(Mg, Nb)–TiO2 catalysts for nitrate hydrogenation. Applied Catalysis A: General, 2013, 467, 414-420.	2.2	16
57	Adsorptive removal of Ag/Au quantum dots onto covalent organic frameworks@magnetic zeolite@arabic gum hydrogel and their catalytic microwave-Fenton oxidative degradation of Rifampicin antibiotic. Journal of Colloid and Interface Science, 2022, 624, 602-618.	5.0	16
58	Synthesis and characterization of niobium(V) and tantalum(V) derivatives with diamido ligands. Molecular structure of {4,5-Me2-o-C6H2(NSiMe3)2}2NbCl and of a tantalum imide. Polyhedron, 2001, 20, 2405-2414.	1.0	15
59	Surface modification of titanium oxide nanoparticles with chelating molecules: New recognition devices for controlling the selectivity towards lanthanides ionic separation. Separation and Purification Technology, 2015, 147, 220-226.	3.9	15
60	The quest for single-source precursors for BaTiO3 and SrTiO3. Journal of Sol-Gel Science and Technology, 1997, 8, 49-53.	1.1	14
61	Molecular structure of [In2(μ,η1-OR)(μ,η2-OR)(η2-OR)3(η1-OR)] R=C2H4NMe2, a pincer ligand. Inorganic Chemistry Communication, 2002, 5, 347-350.	1.8	14
62	Cost efficient synthesis of bismuth aminoalkoxides from bismuth oxide: Molecular structure of [Bi2(mdea)2(mdeaH)2](mdeaH2)2. Inorganic Chemistry Communication, 2007, 10, 80-83.	1.8	14
63	One-pot deposition of palladium on hybrid TiO2 nanoparticles and catalytic applications in hydrogenation. Journal of Colloid and Interface Science, 2012, 369, 309-316.	5.0	14
64	SH-functionalized cubic mesostructured silica as a support for small gold nanoparticles. RSC Advances, 2013, 3, 725-728.	1.7	14
65	Thermodynamics of Nanoparticles: Experimental Protocol Based on a Comprehensive Ginzburg-Landau Interpretation. Nano Letters, 2014, 14, 269-276.	4.5	14
66	Modeling Energy Migration for Upconversion Materials. Journal of Physical Chemistry C, 2018, 122, 888-893.	1.5	14
67	Heteroleptic Tin(IV) Aminoalkoxides and Aminofluoroalkoxides as MOCVD Precursors for Undoped and F-Doped SnO ₂ Thin Films. Inorganic Chemistry, 2020, 59, 7167-7180.	1.9	14
68	Optimum in the thermoelectric efficiency of nanostructured Nb-doped TiO ₂ ceramics: from polarons to Nb–Nb dimers. Physical Chemistry Chemical Physics, 2020, 22, 13008-13016.	1.3	13
69	Water adducts of aryloxides: synthesis and molecular structure of Pr[OC6H2(CH2NMe2)3-2,4,6]3(H2O)2. Polyhedron, 1995, 14, 327-330.	1.0	12
70	Synthesis of nanocrystalline Y2O3/Pr3+ from heterometallic alkoxide via sol–gel process. Materials Letters, 2004, 58, 1989-1992.	1.3	12
71	Preparations of nano-particles, nano-composites and fibers of ZnO from an amide precursor: Photocatalytic decomposition of (CH3)2S2 in a continuous flow reactor. Materials Research Bulletin, 2006, 41, 2210-2218.	2.7	12
72	Syntheses and structures of novel hafnium chloroamido mono-amidinate and mono-guanidinate as precursors for HfO2 thin film. Polyhedron, 2010, 29, 2522-2526.	1.0	12

#	Article	IF	CITATIONS
73	Asymmetrically substituted triazenes as poor electron donor ligands in the precursor chemistry of iron(<scp>ii</scp>) for iron-based metallic and intermetallic nanocrystals. Dalton Transactions, 2017, 46, 13055-13064.	1.6	12
74	Multicolor Solar Absorption as a Synergetic UV Upconversion Enhancement Mechanism in LiYF ₄ :Yb ³⁺ ,Tm ³⁺ Nanocrystals. ACS Photonics, 2019, 6, 3126-3131.	3.2	12
75	Reactions of coordinated alcohol as a route to mixed-metal La–Zn alkoxides: molecular structure of LaZn3(μ-OBut)6[N(SiMe3)2]3. Polyhedron, 1998, 17, 4249-4256.	1.0	11
76	Effect of titanium additives on the growth of tellurium dioxide crystals in a sol–gel process. Materials Letters, 2005, 59, 2379-2382.	1.3	11
77	SERS self-monitoring of Ag-catalyzed reaction by magnetically separable mesoporous Fe 3 O 4 @Ag@mSiO 2. Microporous and Mesoporous Materials, 2018, 263, 113-119.	2.2	11
78	Pressure-Induced Phase Transitions in TiO ₂ Rutile Nanorods. Journal of Physical Chemistry C, 2019, 123, 1948-1953.	1.5	11
79	Synthesis and structures of dinuclear low-coordinate lithium and zirconium(iv) complexes derived from the diamido ligands 1,3-(CH2N̄C6H3R12)2C6H4(R1= Me or Pri). Dalton Transactions RSC, 2002, , 3980-3984.	2.3	10
80	Lanthanide molecular oxohydroxides: Synthesis and characterisation of [Y4(μ4-O)(μ-OEt)2(μ,η2-AAA)2(η2-AAA)3]2(μ3-OH)4(μ3-OEt)2 (HAAA=allylacetatoacetate). Inorganic Che Communication, 2007, 10, 143-147.	mistry	10
81	Synthesis of 2-(arylamino)ethyl phosphonic acids via the aza-Michael addition on diethyl vinylphosphonate. Tetrahedron, 2013, 69, 115-121.	1.0	10
82	Self-Assembled Hybrid ZnO Nanostructures as Supports for Copper-Based Catalysts in the Hydrogenolysis of Glycerol. Catalysts, 2021, 11, 516.	1.6	10
83	From molecules to materials: some examples in yttrium and lanthanide chemistry. Comptes Rendus Chimie, 2004, 7, 521-527.	0.2	9
84	ZnO nanoparticles as a luminescent down-shifting layer for photosensitive devices. Journal of Semiconductors, 2013, 34, 053005.	2.0	9
85	Shape Controllable Preparation of Submicronic Cadmium Tetrazoleâ€Based Metal–Organic Frameworks via Solvothermal or Microwaveâ€Assisted Methods and Their Photocatalytic Studies. Chinese Journal of Chemistry, 2017, 35, 209-216.	2.6	9
86	Synthesis, characterisation and X-ray structures of yttrium, barium and copper(II) β-ketoesterate complexes. Inorganica Chimica Acta, 2000, 304, 99-107.	1.2	8
87	Synthesis, characterisation and grafting onto silica of alkoxide–triflate lanthanum complexes. Molecular structure of La(OC6H3-2,6-Me2)2(η1-O3SCF3)(tetraglyme). Polyhedron, 2003, 22, 127-132.	1.0	8
88	Molecular structure of [Y 4 (μ 3 ,η 2 -OR) 3 (μ,η 2 -OR) 2 (η 1 -OR) 4 (μ,η 1 -OR) 3] 2 R=C 2 H 4 OPr i , an hom alkoxide with three different coordination numbers. Inorganic Chemistry Communication, 2004, 7, 751-755.	oleptic 1.8	8
89	Remarkable Influence of molecular structure of N,N'-unsymmetrically substituted 1,3-amidinate and -guanidinate on the Volatility and the Thermal Stability of Precursors for HfO ₂ Films via Liquid Injection-MOCVD. ECS Transactions, 2009, 25, 151-158.	0.3	8
90	Chemical Vapor Deposition of Al ₁₃ Fe ₄ Highly Selective Catalytic Films for the Semiâ€Hydrogenation of Acetylene. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700692.	0.8	8

#	Article	IF	CITATIONS
91	Synthesis, characterization and thermal transport properties of heteroleptic N-alkyl triazenide complexes of titanium(IV) and niobium(V). Polyhedron, 2018, 152, 84-89.	1.0	8
92	Doping of ZnO inorganic-organic nanohybrids with metal elements. Scientific Reports, 2019, 9, 11959.	1.6	8
93	Synthesis, characterisation and thermal decomposition study of cerium(IV) 2-(2′-hydroxyphenyl)-2-oxazoline derivatives. Polyhedron, 2004, 23, 1467-1472.	1.0	7
94	TiO2-Based Hybrid Nanocomposites Modified by Phosphonate Molecules as Selective PAH Adsorbents. Molecules, 2018, 23, 3046.	1.7	7
95	Quest to enhance up-conversion efficiency: a comparison of anhydrous vs. hydrous synthesis of NaGdF4: Yb3+ and Tm3+ nanoparticles. Materials Today Chemistry, 2020, 17, 100326.	1.7	7
96	Calcium tetramethylheptanedionate adducts with N-donor ligands. Molecular structure of a dimeric and volatile adduct Ca2(η2-thd)(μ,η2-thd)3(η2-bipy). Polyhedron, 2001, 20, 1065-1070.	1.0	6
97	Single–Step Synthesis of Nanocrystalline Doped-Lanthanum Hydroxide Materials from Heterometallic Alkoxides. Journal of Sol-Gel Science and Technology, 2005, 35, 57-64.	1.1	6
98	New Hybrid TiO2 Nano-structured Materials for Lanthanides Separation. Chemistry Letters, 2007, 36, 1364-1365.	0.7	6
99	Hydrolysis of a (2-Propanol)yttrium Triiodide Complex in the Presence of Glymes: Synthesis and X-ray Structures of Hydroxo-Bridged Dinuclear Yttrium Complexes and Their Applications in Materials Science. European Journal of Inorganic Chemistry, 2007, 2007, 2208-2215.	1.0	6
100	Inelastic neutron scattering study of the coordination of para-amino benzoic acid molecules to the surface of nanocrystalline titania particles. Chemical Physics Letters, 2009, 472, 65-68.	1.2	6
101	Nanometric NaYF4 as an Unconventional Support for Gold Catalysts for Oxidation Reactions. ACS Omega, 2019, 4, 5852-5861.	1.6	6
102	Effect of High Pressure Spark Plasma Sintering on the Densification of a Nb-Doped TiO2 Nanopowder. Ceramics, 2020, 3, 507-520.	1.0	6
103	Low-Temperature O3 Decomposition over Pd-TiO2 Hybrid Catalysts. Catalysts, 2022, 12, 448.	1.6	6
104	Synthesis and structural characterization of some titanium butoxides modified with chloroacetic acids. Transition Metal Chemistry, 2013, 38, 835-841.	0.7	5
105	Visible luminescence improvement of ZnO/PAA nano-hybrids by silica coating. Applied Surface Science, 2021, 540, 148343.	3.1	5
106	Controlling the Properties of Bulk Metal Oxides at a Molecular Level: Alkoxides Vs Carboxylatesâ€Alkoxides Routes. Materials Research Society Symposia Proceedings, 1994, 346, 21.	0.1	4
107	Surface Segregation Study of Transparent ZnGa2O4 Films by XPS. Surface Science Spectra, 2001, 8, 303-311.	0.3	4
108	New Synthesis Approach for Hybrid Gd(III)–Loaded Nanocrystalline TiO ₂ as Potential Magnetic Resonance Imaging Contrast Agents. Journal of Nanoscience and Nanotechnology, 2011, 11, 9237-9243.	0.9	4

#	Article	IF	CITATIONS
109	ĥ⇌μ exchange bonding mode of bidentate tmeda ligand. Molecular structure of [Y(tmhd)3]2(μ-tmeda). Inorganic Chemistry Communication, 2003, 6, 1039-1043.	1.8	3
110	One-Pot deposition of palladium on hybrid TiO2 nanoparticles: Application for the hydrogenation of cinnamaldehyde. Studies in Surface Science and Catalysis, 2010, 175, 605-608.	1.5	3
111	Conformal Atomic Layer Deposition of TA-Based Diffusion Barrier Film Using a Novel Mono-Guanidinate Precursor. Journal of Nanoscience and Nanotechnology, 2011, 11, 8383-8386.	0.9	3
112	Design of Hybrid PAH Nanoadsorbents by Surface Functionalization of ZrO2 Nanoparticles with Phosphonic Acids. Nanomaterials, 2021, 11, 952.	1.9	3
113	Microstructure of BaTiO3 and SrTiO3 layers obtained by injection MOCVD. European Physical Journal Special Topics, 1998, 08, Pr9-247-Pr9-250.	0.2	3
114	The Perovskite SrTiO3 on Si/SiO2 by Liquid Injection MOCVD. ECS Transactions, 2009, 19, 669-684.	0.3	2
115	(Invited) Developments of ALD Processes: Experiments and Thermodynamic Evaluations. ECS Transactions, 2010, 33, 321-332.	0.3	2
116	ALD TaN from PDMAT in TSV Architectures. ECS Transactions, 2010, 33, 183-193.	0.3	2
117	Atomic Layer Deposition of TiO2 ultrathin films on 3D substrates for energy applications. Materials Research Society Symposia Proceedings, 2012, 1439, 63-68.	0.1	2
118	Characterization of nitrogen-doped TiO <inf>2</inf> thin films for photovoltaic applications. , 2013, , .		2
119	Study of the Parameters Impacting the Photocatalytic Reduction of Carbon Dioxide in Ionic Liquids. ChemPhotoChem, 2021, 5, 721-726.	1.5	2
120	Study of the Parameters Impacting the Photocatalytic Reduction of Carbon Dioxide in Ionic Liquids. ChemPhotoChem, 2021, 5, 692-693.	1.5	2
121	Study of titanium amino-alkoxide derivatives as TiO2 Chemical Beam Vapour Deposition precursor. Materials Chemistry and Physics, 2022, 277, 125561.	2.0	2
122	Characterization of transparent ZnM2O4 coatings (M = Al, Ga) obtained by sol-gel routes with heterometallic alkoxides as precursors. European Physical Journal Special Topics, 2001, 11, Pr11-283-Pr11-287.	0.2	1
123	Synthesis and Thermal Behavior of Heteroleptic γâ€5ubstituted Acetylacetonateâ€Alkoxides of Titanium. European Journal of Inorganic Chemistry, 2021, 2021, 1976-1983.	1.0	1
124	Niobium and tantalum derivatives with bidentate nitrogen ligands as potential precursors to nitrides. European Physical Journal Special Topics, 1999, 09, Pr8-953-Pr8-958.	0.2	1
125	Asymmetry-Induced Redistribution in Sn(IV)–Ti(IV) Hetero-Bimetallic Alkoxide Precursors and Its Impact on Thin-Film Deposition by Metal–Organic Chemical Vapor Deposition. Crystal Growth and Design, 2022, 22, 54-59.	1.4	1
126	The Quest for Single-Source Precursors for BaTiO3 and SrTiO3. Journal of Sol-Gel Science and Technology, 1997, 8, 49-53.	1.1	0

#	Article	IF	CITATIONS
127	Hexakis{î¼2-4-[2-(diisopropylamino)ethylamino]pent-3-en-2-onato-κ3N,O:O}tricalcium(II) hexane solvate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m2049-m2050.	0.2	0
128	Interaction of Iron Tetrasulfophthalocyanine with TiO2 Nanoparticles by XPS. Surface Science Spectra, 2008, 15, 70-76.	0.3	0
129	Input of IBA for the study of plasmonic properties of doped ZnO nanocrystals. Nuclear Instruments & Methods in Physics Research B, 2020, 479, 74-79.	0.6	Ο