Chuan Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9348520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polybenzimidazole functionalized electrolyte with Liâ€wetting and selfâ€fluorination functionalities for practical Li metal batteries. InformaÄnÃ-Materiály, 2022, 4, .	8.5	33
2	Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. Journal of Energy Chemistry, 2022, 67, 432-450.	7.1	66
3	Nanoconfinement Engineering over Hollow Multiâ€Shell Structured Copper towards Efficient Electrocatalytical Câ"C coupling. Angewandte Chemie - International Edition, 2022, 61, .	7.2	57
4	Nanoconfinement Engineering over Hollow Multiâ€Shell Structured Copper towards Efficient Electrocatalytical Câ^C coupling. Angewandte Chemie, 2022, 134, e202113498.	1.6	4
5	Electrostatic Shielding Regulation of Magnetron Sputtered Al-Based Alloy Protective Coatings Enables Highly Reversible Zinc Anodes. Nano Letters, 2022, 22, 1017-1023.	4.5	118
6	Proton sponge promotion of electrochemical CO2 reduction to multi-carbon products. Joule, 2022, 6, 205-220.	11.7	57
7	Preferred Orientation of TiN Coatings Enables Stable Zinc Anodes. ACS Energy Letters, 2022, 7, 197-203.	8.8	95
8	Highâ€Polarity Fluoroalkyl Ether Electrolyte Enables Solvationâ€Free Li ⁺ Transfer for Highâ€Rate Lithium Metal Batteries. Advanced Science, 2022, 9, e2104699.	5.6	54
9	Transient Solidâ€State Laser Activation of Indium for Highâ€Performance Reduction of CO ₂ to Formate. Small, 2022, 18, e2201311.	5.2	22
10	Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nature Catalysis, 2022, 5, 388-396.	16.1	153
11	CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide. Nature Communications, 2022, 13, 2668.	5.8	44
12	Solar photoelectrochemical synthesis of electrolyte-free H ₂ O ₂ aqueous solution without needing electrical bias and H ₂ . Energy and Environmental Science, 2021, 14, 3110-3119.	15.6	37
13	Tungsten Blue Oxide as a Reusable Electrocatalyst for Acidic Water Oxidation by Plasma-Induced Vacancy Engineering. CCS Chemistry, 2021, 3, 1553-1561.	4.6	34
14	Recent advances in anode materials for potassium-ion batteries: A review. Nano Research, 2021, 14, 4442-4470.	5.8	76
15	Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature Communications, 2021, 12, 2870.	5.8	605
16	General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nature Chemistry, 2021, 13, 887-894.	6.6	362
17	Composite Separators for Robust High Rate Lithium Ion Batteries. Advanced Functional Materials, 2021, 31, 2101420.	7.8	87
18	Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nature Catalysis, 2021, 4, 565-574.	16.1	121

CHUAN XIA

#	Article	IF	CITATIONS
19	Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nature Communications, 2021, 12, 4225.	5.8	218
20	Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nature Nanotechnology, 2021, 16, 1386-1393.	15.6	282
21	Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	93
22	Insights into Practical-Scale Electrochemical H2O2 Synthesis. Trends in Chemistry, 2020, 2, 942-953.	4.4	85
23	Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nature Communications, 2020, 11, 3633.	5.8	294
24	Recommended practice to report selectivity in electrochemical synthesis of H2O2. Nature Catalysis, 2020, 3, 605-607.	16.1	112
25	Strategies in catalysts and electrolyzer design for electrochemical CO ₂ reduction toward C ₂₊ products. Science Advances, 2020, 6, eaay3111.	4.7	477
26	Review of MXene electrochemical microsupercapacitors. Energy Storage Materials, 2020, 27, 78-95.	9.5	223
27	Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nature Catalysis, 2020, 3, 125-134.	16.1	252
28	Artificial Solid Electrolyte Interphase for Suppressing Surface Reactions and Cathode Dissolution in Aqueous Zinc Ion Batteries. ACS Energy Letters, 2019, 4, 2776-2781.	8.8	155
29	Direct electrosynthesis of pure aqueous H ₂ O ₂ solutions up to 20% by weight using a solid electrolyte. Science, 2019, 366, 226-231.	6.0	573
30	Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nature Communications, 2019, 10, 3997.	5.8	528
31	Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nature Energy, 2019, 4, 776-785.	19.8	458
32	Solubility contrast strategy for enhancing intercalation pseudocapacitance in layered MnO2 electrodes. Nano Energy, 2019, 56, 357-364.	8.2	41
33	Zinc-ion batteries: Materials, mechanisms, and applications. Materials Science and Engineering Reports, 2019, 135, 58-84.	14.8	604
34	Phosphine plasma activation of α-Fe2O3 for high energy asymmetric supercapacitors. Nano Energy, 2018, 49, 155-162.	8.2	173
35	Titelbild: Highly Stable Aqueous Zincâ€lon Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode (Angew. Chem. 15/2018). Angewandte Chemie, 2018, 130, 3899-3899.	1.6	1
36	Highly Stable Aqueous Zincâ€lon Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode. Angewandte Chemie, 2018, 130, 4007-4012.	1.6	108

CHUAN XIA

#	Article	IF	CITATIONS
37	Anomalous Li Storage Capability in Atomically Thin Two-Dimensional Sheets of Nonlayered MoO ₂ . Nano Letters, 2018, 18, 1506-1515.	4.5	74
38	Highly Stable Aqueous Zincâ€ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode. Angewandte Chemie - International Edition, 2018, 57, 3943-3948.	7.2	742
39	Rechargeable Aqueous Zincâ€lon Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode. Advanced Materials, 2018, 30, 1705580.	11.1	738
40	Large Intercalation Pseudocapacitance in 2D VO ₂ (B): Breaking through the Kinetic Barrier. Advanced Materials, 2018, 30, e1803594.	11.1	50
41	Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution. Advanced Energy Materials, 2017, 7, 1602089.	10.2	171
42	General Top-Down Ion Exchange Process for the Growth of Epitaxial Chalcogenide Thin Films and Devices. Chemistry of Materials, 2017, 29, 690-698.	3.2	9
43	Amorphous NiFe-OH/NiFeP Electrocatalyst Fabricated at Low Temperature for Water Oxidation Applications. ACS Energy Letters, 2017, 2, 1035-1042.	8.8	505
44	Spin Filtering in Epitaxial Spinel Films with Nanoscale Phase Separation. ACS Nano, 2017, 11, 5011-5019.	7.3	24
45	Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors. Nano Energy, 2017, 35, 331-340.	8.2	324
46	The Impact of Surface Chemistry on Bio-derived Carbon Performance as Supercapacitor Electrodes. Journal of Electronic Materials, 2017, 46, 1628-1636.	1.0	8
47	Layered SnS sodium ion battery anodes synthesized near room temperature. Nano Research, 2017, 10, 4368-4377.	5.8	58
48	Hybrid Microsupercapacitors with Vertically Scaled 3D Current Collectors Fabricated using a Simple Cutâ€andâ€Transfer Strategy. Advanced Energy Materials, 2017, 7, 1601257.	10.2	75
49	Evidence for topological type-II Weyl semimetal WTe2. Nature Communications, 2017, 8, 2150.	5.8	263
50	Ultrathin Epitaxial Ferromagnetic <i>γ</i> â€Fe ₂ O ₃ Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors. Advanced Functional Materials, 2016, 26, 5679-5689.	7.8	24
51	Observation of large lowâ€field magnetoresistance in spinel cobaltite: A new halfâ€metal. Physica Status Solidi - Rapid Research Letters, 2016, 10, 190-196.	1.2	14
52	Selenideâ€Based Electrocatalysts and Scaffolds for Water Oxidation Applications. Advanced Materials, 2016, 28, 77-85.	11.1	544
53	Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes. Nano Energy, 2016, 24, 78-86.	8.2	180
54	NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors. Electrochimica Acta, 2016, 196, 611-621.	2.6	41

CHUAN XIA

#	Article	IF	CITATIONS
55	Micro-Pseudocapacitors with Electroactive Polymer Electrodes: Toward AC-Line Filtering Applications. ACS Applied Materials & amp; Interfaces, 2016, 8, 12748-12755.	4.0	52
56	Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage. Nano Today, 2016, 11, 250-271.	6.2	106
57	SnSe ₂ 2D Anodes for Advanced Sodium Ion Batteries. Advanced Energy Materials, 2016, 6, 1601188.	10.2	243
58	Highly Efficient Laser Scribed Graphene Electrodes for Onâ€Chip Electrochemical Sensing Applications. Advanced Electronic Materials, 2016, 2, 1600185.	2.6	202
59	Novel amperometric glucose biosensor based on MXene nanocomposite. Scientific Reports, 2016, 6, 36422.	1.6	268
60	Cube-shaped Porous Carbon Derived from MOF-5 as Advanced Material for Sodium-Ion Batteries. Electrochimica Acta, 2016, 196, 413-421.	2.6	114
61	Supercapacitors: Highly Stable Supercapacitors with Conducting Polymer Core‧hell Electrodes for Energy Storage Applications (Adv. Energy Mater. 8/2015). Advanced Energy Materials, 2015, 5, .	10.2	0
62	Self-templating Scheme for the Synthesis of Nanostructured Transition-Metal Chalcogenide Electrodes for Capacitive Energy Storage. Chemistry of Materials, 2015, 27, 4661-4668.	3.2	121
63	Highly Stable Supercapacitors with Conducting Polymer Coreâ€ 6 hell Electrodes for Energy Storage Applications. Advanced Energy Materials, 2015, 5, 1401805.	10.2	139
64	Fabrication and characterization of nanostructured Fe3S4, an isostructural compound of half-metallic Fe3O4. Journal of Applied Physics, 2015, 117, .	1.1	16
65	Graphene based integrated tandem supercapacitors fabricated directly on separators. Nano Energy, 2015, 15, 1-8.	8.2	30
66	Ternary chalcogenide micro-pseudocapacitors for on-chip energy storage. Chemical Communications, 2015, 51, 10494-10497.	2.2	78
67	ls NiCo ₂ S ₄ Really a Semiconductor?. Chemistry of Materials, 2015, 27, 6482-6485.	3.2	203
68	One-Step Electrodeposited Nickel Cobalt Sulfide Nanosheet Arrays for High-Performance Asymmetric Supercapacitors. ACS Nano, 2014, 8, 9531-9541.	7.3	687
69	A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes. Journal of Power Sources, 2014, 267, 521-526.	4.0	46
70	Preparation and Piezoelectricity of <scp>NaNbO₃</scp> Highâ€Density Ceramics by Molten Salt Synthesis. Journal of the American Ceramic Society, 2011, 94, 4329-4334.	1.9	41