Peter M Glazer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9348238/publications.pdf

Version: 2024-02-01

191 papers 12,133 citations

20759 60 h-index 102 g-index

195 all docs

195 docs citations

195 times ranked 13054 citing authors

#	Article	IF	CITATIONS
1	MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature, 2015, 518, 107-110.	13.7	709
2	2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Science Translational Medicine, 2017, 9, .	5.8	420
3	MicroRNA Regulation of DNA Repair Gene Expression in Hypoxic Stress. Cancer Research, 2009, 69, 1221-1229.	0.4	402
4	Down-Regulation of Rad51 and Decreased Homologous Recombination in Hypoxic Cancer Cells. Molecular and Cellular Biology, 2004, 24, 8504-8518.	1.1	341
5	Hypoxia-Induced Down-regulation of BRCA1 Expression by E2Fs. Cancer Research, 2005, 65, 11597-11604.	0.4	313
6	Outcome of conservatively managed early-onset breast cancer by BRCA1/2 status. Lancet, The, 2002, 359, 1471-1477.	6.3	290
7	Chronic Hypoxia Decreases Synthesis of Homologous Recombination Proteins to Offset Chemoresistance and Radioresistance. Cancer Research, 2008, 68, 605-614.	0.4	286
8	MicroRNA-210 Regulates Mitochondrial Free Radical Response to Hypoxia and Krebs Cycle in Cancer Cells by Targeting Iron Sulfur Cluster Protein ISCU. PLoS ONE, 2010, 5, e10345.	1,1	276
9	Decreased Expression of the DNA Mismatch Repair Gene Mlh1 under Hypoxic Stress in Mammalian Cells. Molecular and Cellular Biology, 2003, 23, 3265-3273.	1.1	255
10	Specific Mutations Induced by Triplex-Forming Oligonucleotides in Mice. Science, 2000, 290, 530-533.	6.0	252
11	Inhibition of poly(ADP-ribose) polymerase down-regulates BRCA1 and RAD51 in a pathway mediated by E2F4 and p130. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2201-2206.	3.3	193
12	Regulation of DNA repair in hypoxic cancer cells. Cancer and Metastasis Reviews, 2007, 26, 249-260.	2.7	191
13	Oncometabolites suppress DNA repair by disrupting local chromatin signalling. Nature, 2020, 582, 586-591.	13.7	183
14	Hypoxia down-regulates DNA double strand break repair gene expression in prostate cancer cells. Radiotherapy and Oncology, 2005, 76, 168-176.	0.3	172
15	Molecular and Cellular Pharmacology of the Hypoxia-Activated Prodrug TH-302. Molecular Cancer Therapeutics, 2012, 11, 740-751.	1.9	166
16	Targeted gene knockout mediated by triple helix forming oligonucleotides. Nature Genetics, 1998, 20, 212-214.	9.4	163
17	Hypoxic Tumor Microenvironment and Cancer Cell Differentiation. Current Molecular Medicine, 2009, 9, 425-434.	0.6	153
18	Krebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nature Genetics, 2018, 50, 1086-1092.	9.4	152

#	Article	IF	Citations
19	Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 569, 75-85.	0.4	146
20	In vivo correction of anaemia in \hat{l}^2 -thalassemic mice by \hat{l}^3 PNA-mediated gene editing with nanoparticle delivery. Nature Communications, 2016, 7, 13304.	5.8	143
21	The potential for gene repair via triple helix formation. Journal of Clinical Investigation, 2003, 112, 487-494.	3.9	135
22	Triplex-forming oligonucleotides: principles and applications. Quarterly Reviews of Biophysics, 2002, 35, 89-107.	2.4	131
23	Triple-Helix Formation Induces Recombination in Mammalian Cells via a Nucleotide Excision Repair-Dependent Pathway. Molecular and Cellular Biology, 2000, 20, 990-1000.	1.1	130
24	Hypoxia-induced genetic instability—a calculated mechanism underlying tumor progression. Journal of Molecular Medicine, 2007, 85, 139-148.	1.7	128
25	Interplay between DNA repair and inflammation, and the link to cancer. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49, 116-139.	2.3	128
26	In utero nanoparticle delivery for site-specific genome editing. Nature Communications, 2018, 9, 2481.	5.8	124
27	Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment. DNA Repair, 2015, 32, 180-189.	1.3	122
28	<i>BRCA1/BRCA2</i> Germline Mutations in Locally Recurrent Breast Cancer Patients After Lumpectomy and Radiation Therapy: Implications for Breast-Conserving Management in Patients With <i>BRCA1</i> BRCA2 Mutations. Journal of Clinical Oncology, 1999, 17, 3017-3024.	0.8	119
29	Hypoxia-Induced Epigenetic Regulation and Silencing of the <i>BRCA1</i> Promoter. Molecular and Cellular Biology, 2011, 31, 3339-3350.	1.1	118
30	Nanoparticles that deliver triplex-forming peptide nucleic acid molecules correct F508del CFTR in airway epithelium. Nature Communications, 2015, 6, 6952.	5.8	114
31	Site-directed recombination via bifunctional PNA-DNA conjugates. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16695-16700.	3.3	113
32	Human XPA and RPA DNA repair proteins participate in specific recognition of triplex-induced helical distortions. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5848-5853.	3.3	112
33	HDAC6 Deacetylates and Ubiquitinates MSH2 to Maintain Proper Levels of MutSl±. Molecular Cell, 2014, 55, 31-46.	4.5	112
34	Cediranib suppresses homology-directed DNA repair through down-regulation of BRCA1/2 and RAD51. Science Translational Medicine, 2019, 11, .	5.8	111
35	Inhibition of hypoxia-induced miR-155 radiosensitizes hypoxic lung cancer cells. Cancer Biology and Therapy, 2011, 12, 908-914.	1.5	108
36	Chromosomal mutations induced by triplex-forming oligonucleotides in mammalian cells. Nucleic Acids Research, 1999, 27, 1176-1181.	6.5	107

#	Article	lF	CITATIONS
37	Mutagenesis induced by the tumor microenvironment. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 400, 439-446.	0.4	102
38	Targeted Correction of an Episomal Gene in Mammalian Cells by a Short DNA Fragment Tethered to a Triplex-forming Oligonucleotide. Journal of Biological Chemistry, 1999, 274, 11541-11548.	1.6	101
39	Suppressing miR-21 activity in tumor-associated macrophages promotes an antitumor immune response. Journal of Clinical Investigation, 2019, 129, 5518-5536.	3.9	92
40	Triplex-induced Recombination in Human Cell-free Extracts. Journal of Biological Chemistry, 2001, 276, 18018-18023.	1.6	91
41	Co-repression of mismatch repair gene expression by hypoxia in cancer cells: Role of the Myc/Max network. Cancer Letters, 2007, 252, 93-103.	3.2	90
42	The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells. Breast Cancer Research, 2018, 20, 16.	2.2	88
43	Mitochondrial DNA stress signalling protects the nuclear genome. Nature Metabolism, 2019, 1, 1209-1218.	5.1	87
44	Nanoparticles Deliver Triplex-forming PNAs for Site-specific Genomic Recombination in CD34+ Human Hematopoietic Progenitors. Molecular Therapy, 2011, 19, 172-180.	3.7	86
45	Hypoxia-Induced Phosphorylation of Chk2 in an Ataxia Telangiectasia Mutated–Dependent Manner. Cancer Research, 2005, 65, 10734-10741.	0.4	85
46	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	13.7	84
47	Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13514-13519.	3.3	83
48	microRNAs in Cancer Cell Response to Ionizing Radiation. Antioxidants and Redox Signaling, 2014, 21, 293-312.	2.5	83
49	Cell-interdependent cisplatin killing by Ku/DNA-dependent protein kinase signaling transduced through gap junctions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6134-6139.	3.3	80
50	Mcp1 Promotes Macrophage-Dependent Cyst Expansion in Autosomal Dominant Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 2471-2481.	3.0	78
51	Targeting Cancer with a Lupus Autoantibody. Science Translational Medicine, 2012, 4, 157ra142.	5.8	76
52	Chromosome Targeting at Short Polypurine Sites by Cationic Triplex-forming Oligonucleotides. Journal of Biological Chemistry, 2001, 276, 38536-38541.	1.6	75
53	Emerging Roles of microRNAs in the Molecular Responses to Hypoxia. Current Pharmaceutical Design, 2009, 15, 3861-3866.	0.9	75
54	The cytotoxicity of (\hat{a}^{-}) -lomaiviticin A arises from induction of double-strand breaks in DNA. Nature Chemistry, 2014, 6, 504-510.	6.6	73

#	Article	IF	CITATIONS
55	Gene targeting via triple-helix formation. Progress in Molecular Biology and Translational Science, 2001, 67, 163-192.	1.9	71
56	Alterations in DNA Repair Gene Expression under Hypoxia: Elucidating the Mechanisms of Hypoxia-Induced Genetic Instability. Annals of the New York Academy of Sciences, 2005, 1059, 184-195.	1.8	69
57	Differing patterns of genetic instability in mice deficient in the mismatch repair genes Pms2, Mlh1, Msh2, Msh3 and Msh6. Carcinogenesis, 2006, 27, 2402-2408.	1.3	68
58	Altered Repair of Targeted Psoralen Photoadducts in the Context of an Oligonucleotide-mediated Triple Helix. Journal of Biological Chemistry, 1995, 270, 22595-22601.	1.6	65
59	Therapeutic Peptide Nucleic Acids: Principles, Limitations, and Opportunities. Yale Journal of Biology and Medicine, 2017, 90, 583-598.	0.2	65
60	Repair of DNA lesions associated with triplexâ€forming oligonucleotides. Molecular Carcinogenesis, 2009, 48, 389-399.	1.3	63
61	Anti-tumor Activity of miniPEG- \hat{I}^3 -Modified PNAs to Inhibit MicroRNA-210 for Cancer Therapy. Molecular Therapy - Nucleic Acids, 2017, 9, 111-119.	2.3	61
62	Site-specific targeting of psoralen photoadducts with a triple helix-forming oligonucleotide: characterization of psoralen monoadduct and crosslink formation. Nucleic Acids Research, 1994, 22, 2845-2852.	6.5	60
63	Silencing of the DNA Mismatch Repair Gene MLH1 Induced by Hypoxic Stress in a Pathway Dependent on the Histone Demethylase LSD1. Cell Reports, 2014, 8, 501-513.	2.9	60
64	Hypoxia Promotes Resistance to EGFR Inhibition in NSCLC Cells via the Histone Demethylases, LSD1 and PLU-1. Molecular Cancer Research, 2018, 16, 1458-1469.	1.5	60
65	Peptide Nucleic Acids as a Tool for Site-Specific Gene Editing. Molecules, 2018, 23, 632.	1.7	57
66	Repair and recombination induced by triple helix DNA. Frontiers in Bioscience - Landmark, 2007, 12, 4288.	3.0	56
67	Nanotechnology for delivery of peptide nucleic acids (PNAs). Journal of Controlled Release, 2016, 240, 302-311.	4.8	55
68	Triplex Formation by Oligonucleotides Containing 5-(1-Propynyl)-2â€~-deoxyuridine: Decreased Magnesium Dependence and Improved Intracellular Gene Targetingâ€. Biochemistry, 1999, 38, 1893-1901.	1.2	54
69	Triplex-Forming Oligonucleotides as Potential Tools for Modulation of Gene Expression. Anti-Cancer Agents in Medicinal Chemistry, 2005, 5, 319-326.	7.0	54
70	Targeted Disruption of the CCR5 Gene in Human Hematopoietic Stem Cells Stimulated by Peptide Nucleic Acids. Chemistry and Biology, 2011, 18, 1189-1198.	6.2	54
71	Hypoxia Induces Resistance to EGFR Inhibitors in Lung Cancer Cells via Upregulation of FGFR1 and the MAPK Pathway. Cancer Research, 2020, 80, 4655-4667.	0.4	52
72	High efficiency, restriction-deficientin vitropackaging extracts for bacteriophage lambda DNA using a newE.colilysogen. Nucleic Acids Research, 1993, 21, 3903-3904.	6.5	50

#	Article	IF	Citations
73	Targeted correction of a thalassemia-associated Â-globin mutation induced by pseudo-complementary peptide nucleic acids. Nucleic Acids Research, 2009, 37, 3635-3644.	6.5	50
74	Molecular markers in clinical radiation oncology. Oncogene, 2003, 22, 5915-5925.	2.6	48
75	Impact of hypoxia on DNA repair and genome integrity. Mutagenesis, 2020, 35, 61-68.	1.0	47
76	The Tumor Microenvironment and DNA Repair. Seminars in Radiation Oncology, 2010, 20, 282-287.	1.0	46
77	Functional and physical interaction between the mismatch repair and FA-BRCA pathways. Human Molecular Genetics, 2011, 20, 4395-4410.	1.4	46
78	Hypoxia-induced protein CAIX is associated with somatic loss of BRCA1 protein and pathway activity in triple negative breast cancer. Breast Cancer Research and Treatment, 2012, 136, 67-75.	1.1	46
79	Targeted Gene Modification of Hematopoietic Progenitor Cells in Mice Following Systemic Administration of a PNA-peptide Conjugate. Molecular Therapy, 2012, 20, 109-118.	3.7	44
80	Peptide Nucleic Acids and Gene Editing: Perspectives on Structure and Repair. Molecules, 2020, 25, 735.	1.7	44
81	Optimizing biodegradable nanoparticle size for tissue-specific delivery. Journal of Controlled Release, 2019, 314, 92-101.	4.8	43
82	Peptide conjugates for chromosomal gene targeting by triplex-forming oligonucleotides. Nucleic Acids Research, 2004, 32, 6595-6604.	6.5	42
83	IGF1 Receptor Expression Protects against Microenvironmental Stress Found in the Solid Tumor. Radiation Research, 2002, 158, 174-180.	0.7	41
84	Targeted Genome Modification via Triple Helix Formation. Annals of the New York Academy of Sciences, 2005, 1058, 151-161.	1.8	41
85	DNA-dependent targeting of cell nuclei by a lupus autoantibody. Scientific Reports, 2015, 5, 12022.	1.6	41
86	Single-Stranded γPNAs for In Vivo Site-Specific Genome Editing via Watson-Crick Recognition. Current Gene Therapy, 2014, 14, 331-342.	0.9	41
87	Site-Specific Gene Modification by PNAs Conjugated to Psoralen. Biochemistry, 2006, 45, 314-323.	1.2	40
88	Repair of DNA interstrand cross-links: Interactions between homology-dependent and homology-independent pathways. DNA Repair, 2006, 5, 566-574.	1.3	40
89	Site-directed gene mutation at mixed sequence targets by psoralen-conjugated pseudo-complementary peptide nucleic acids. Nucleic Acids Research, 2007, 35, 7604-7613.	6. 5	40
90	Mutagenesis in PMS2- and MSH2-deficient mice indicates differential protection from transversions and frameshifts. Carcinogenesis, 2000, 21, 1291-1296.	1.3	39

#	Article	IF	CITATIONS
91	Triplex-induced recombination and repair in the pyrimidine motif. Nucleic Acids Research, 2005, 33, 3492-3502.	6.5	39
92	Hypoxic Stress Facilitates Acute Activation and Chronic Downregulation of Fanconi Anemia Proteins. Molecular Cancer Research, 2014, 12, 1016-1028.	1.5	39
93	Overexpression of the DNA mismatch repair factor, PMS2, confers hypermutability and DNA damage tolerance. Cancer Letters, 2006, 244, 195-202.	3.2	37
94	Triplex-Stimulated Intermolecular Recombination at a Single-Copy Genomic Target. Molecular Therapy, 2006, 14, 392-400.	3.7	37
95	Emergence of rationally designed therapeutic strategies for breast cancer targeting DNA repair mechanisms. Breast Cancer Research, 2010, 12, 203.	2.2	37
96	Site-specific Genome Editing in PBMCs With PLGA Nanoparticle-delivered PNAs Confers HIV-1 Resistance in Humanized Mice. Molecular Therapy - Nucleic Acids, 2013, 2, e135.	2.3	37
97	Modified Poly(lacticâ€∢i>coâ€glycolic Acid) Nanoparticles for Enhanced Cellular Uptake and Gene Editing in the Lung. Advanced Healthcare Materials, 2015, 4, 361-366.	3.9	37
98	Nickel induces transcriptional down-regulation of DNA repair pathways in tumorigenic and non-tumorigenic lung cells. Carcinogenesis, 2017, 38, 627-637.	1.3	37
99	Targeted Cross-linking of the Human β-Globin Gene in Living Cells Mediated by a Triple Helix Forming Oligonucleotideâ€. Biochemistry, 2006, 45, 1970-1978.	1.2	36
100	Induction of p53 in mouse cells decreases mutagenesis by UV radiation. Carcinogenesis, 1995, 16, 2295-2300.	1.3	35
101	Gene Therapy for Autosomal Dominant Disorders of Keratin. Journal of Investigative Dermatology Symposium Proceedings, 2005, 10, 47-61.	0.8	34
102	Src-Induced Cisplatin Resistance Mediated by Cell-to-Cell Communication. Cancer Research, 2009, 69, 3619-3624.	0.4	34
103	Potentiation of Temozolomide Cytotoxicity by Inhibition of DNA Polymerase \hat{I}^2 Is Accentuated by BRCA2 Mutation. Cancer Research, 2010, 70, 409-417.	0.4	34
104	Frequent spontaneous deletions at a shuttle vector locus in transgenic mice. Mutagenesis, 1996, 11, 49-56.	1.0	33
105	miR-155 Overexpression Promotes Genomic Instability by Reducing High-fidelity Polymerase Delta Expression and Activating Error-Prone DSB Repair. Molecular Cancer Research, 2016, 14, 363-373.	1.5	33
106	Targeting the Hypoxic and Acidic Tumor Microenvironment with pH-Sensitive Peptides. Cells, 2021, 10, 541.	1.8	33
107	Mutant p53 protein overexpression in women with ipsilateral breast tumor recurrence following lumpectomy and radiation therapy. , 2000, 88, 1091-1098.		32
108	Cyclin D1 expression and early breast cancer recurrence following lumpectomy and radiation. International Journal of Radiation Oncology Biology Physics, 2000, 47, 1169-1176.	0.4	32

#	Article	IF	Citations
109	Basal repression of BRCA1 by multiple E2Fs and pocket proteins at adjacent E2F sites. Cancer Biology and Therapy, 2006, 5, 1400-1407.	1.5	32
110	Distance and Affinity Dependence of Triplex-Induced Recombinationâ€. Biochemistry, 2005, 44, 3856-3864.	1.2	31
111	Nanoparticle for delivery of antisense \hat{I}^3 PNA oligomers targeting CCR5. Artificial DNA, PNA & XNA, 2013, 4, 49-57.	1.4	31
112	Prognostic significance of cyclin D1 protein levels in early-stage larynx cancer treated with primary radiation., 2000, 90, 22-28.		30
113	Transcription Dependence of Chromosomal Gene Targeting by Triplex-forming Oligonucleotides. Journal of Biological Chemistry, 2003, 278, 3357-3362.	1.6	30
114	Activation of human γ-globin gene expression via triplex-forming oligonucleotide (TFO)-directed mutations in the γ-globin gene 5′ flanking region. Gene, 2000, 242, 219-228.	1.0	29
115	CHK2-Dependent Phosphorylation of BRCA1 in Hypoxia. Radiation Research, 2006, 166, 646-651.	0.7	27
116	Other transgenic mutation assays: Tissue specificity of spontaneous point mutations in \hat{l} »supF transgenic mice. , 1996, 28, 459-464.		25
117	Clinical Efficacy of Olaparib in <i>IDH1/IDH2-</i> Mutant Mesenchymal Sarcomas. JCO Precision Oncology, 2021, 5, 466-472.	1.5	24
118	Triplex-Mediated Gene Modification. Methods in Molecular Biology, 2008, 435, 175-190.	0.4	23
119	Frequent T:Aâ†'G:C transversions in X-irradiated mouse cells. Carcinogenesis, 1995, 16, 83-88.	1.3	22
120	DNA Polymerase Beta Germline Variant Confers Cellular Response to Cisplatin Therapy. Molecular Cancer Research, 2017, 15, 269-280.	1.5	22
121	Suppression of homology-dependent DNA double-strand break repair induces PARP inhibitor sensitivity in <i>VHL</i> -deficient human renal cell carcinoma. Oncotarget, 2018, 9, 4647-4660.	0.8	22
122	Lambda phage shuttle vectors for analysis of mutations in mammalian cells in culture and in transgenic mice. Mutation Research - Reviews in Genetic Toxicology, 1989, 220, 263-268.	3.0	21
123	Mutagenesis Mediated by Triple Helix–Forming Oligonucleotides Conjugated to Psoralen: Effects of Linker Arm Length and Sequence Context. Photochemistry and Photobiology, 1998, 67, 289-294.	1.3	21
124	Synthetic lethality of a cell-penetrating anti-RAD51 antibody in PTEN-deficient melanoma and glioma cells. Oncotarget, 2019, 10, 1272-1283.	0.8	21
125	Triplex-Mediated, in vitro Targeting of Psoralen Photoadducts within the Genome of a Transgenic Mouse. Photochemistry and Photobiology, 1996, 63, 207-212.	1.3	20
126	Targeted Genome Modification via Triple Helix Formation. Methods in Molecular Biology, 2014, 1176, 89-106.	0.4	20

#	Article	IF	Citations
127	PTEN Regulates Nonhomologous End Joining By Epigenetic Induction of NHEJ1/XLF. Molecular Cancer Research, 2018, 16, 1241-1254.	1.5	20
128	Targeted Gene Modification Using Triplex-Forming Oligonucleotides., 2004, 262, 173-194.		19
129	A cell-penetrating antibody inhibits human RAD51 via direct binding. Nucleic Acids Research, 2017, 45, 11782-11799.	6.5	19
130	Hypoxia and DNA repair. Yale Journal of Biology and Medicine, 2013, 86, 443-51.	0.2	19
131	Genomic Instability in Cancer. Novartis Foundation Symposium, 2008, 240, 133-151.	1.2	18
132	YU238259 Is a Novel Inhibitor of Homology-Dependent DNA Repair That Exhibits Synthetic Lethality and Radiosensitization in Repair-Deficient Tumors. Molecular Cancer Research, 2015, 13, 1389-1397.	1.5	18
133	Ku80-Targeted pH-Sensitive Peptide–PNA Conjugates Are Tumor Selective and Sensitize Cancer Cells to Ionizing Radiation. Molecular Cancer Research, 2020, 18, 873-882.	1.5	18
134	Reduced Level of Ribonucleotide Reductase R2 Subunits Increases Dependence on Homologous Recombination Repair of Cisplatin-Induced DNA Damage. Molecular Pharmacology, 2011, 80, 1000-1012.	1.0	17
135	Mechanism of Action Studies of Lomaiviticin A and the Monomeric Lomaiviticin Aglycon. Selective and Potent Activity Toward DNA Double-Strand Break Repair-Deficient Cell Lines. Journal of the American Chemical Society, 2015, 137, 5741-5747.	6.6	17
136	LKB1 preserves genome integrity by stimulating BRCA1 expression. Nucleic Acids Research, 2015, 43, 259-271.	6.5	17
137	Peptide nucleic acids and their role in gene regulation and editing. Biopolymers, 2021, 112, e23460.	1.2	17
138	Tumor-selective, antigen-independent delivery of a pH sensitive peptide-topoisomerase inhibitor conjugate suppresses tumor growth without systemic toxicity. NAR Cancer, 2021, 3, zcab021.	1.6	16
139	Development of a statewide hospital plan for radiologic emergencies. International Journal of Radiation Oncology Biology Physics, 2006, 65, 16.e1-16.e15.	0.4	15
140	Polymer delivery systems for site-specific genome editing. Journal of Controlled Release, 2011, 155, 312-316.	4.8	15
141	Triplex-forming Peptide Nucleic Acids Induce Heritable Elevations in Gamma-globin Expression in Hematopoietic Progenitor Cells. Molecular Therapy, 2013, 21, 580-587.	3.7	15
142	Tumor-Targeted, Cytoplasmic Delivery of Large, Polar Molecules Using a pH-Low Insertion Peptide. Molecular Pharmaceutics, 2020, 17, 461-471.	2.3	15
143	Nanoparticles for delivery of agents to fetal lungs. Acta Biomaterialia, 2021, 123, 346-353.	4.1	15
144	Electron-Mediated Aminyl and Iminyl Radicals from C5 Azido-Modified Pyrimidine Nucleosides Augment Radiation Damage to Cancer Cells. Organic Letters, 2018, 20, 7400-7404.	2.4	14

#	Article	IF	CITATIONS
145	Directed Gene Modification via Triple Helix Formation. Current Molecular Medicine, 2001, 1, 391-399.	0.6	14
146	Preclinical evaluation of Laromustine for use in combination with radiation therapy in the treatment of solid tumors. International Journal of Radiation Biology, 2012, 88, 277-285.	1.0	13
147	Tumor-targeted pH-low insertion peptide delivery of theranostic gadolinium nanoparticles for image-guided nanoparticle-enhanced radiation therapy. Translational Oncology, 2020, 13, 100839.	1.7	13
148	BBIT20 inhibits homologous DNA repair with disruption of the BRCA1–BARD1 interaction in breast and ovarian cancer. British Journal of Pharmacology, 2021, 178, 3627-3647.	2.7	13
149	Pathologic Oxidation of PTPN12 Underlies ABL1 Phosphorylation in Hereditary Leiomyomatosis and Renal Cell Carcinoma. Cancer Research, 2018, 78, 6539-6548.	0.4	12
150	Debugging the genetic code: Non-viral inÂvivo delivery of therapeutic genome editing technologies. Current Opinion in Biomedical Engineering, 2018, 7, 24-32.	1.8	12
151	Cooperation between oncogenic Ras and wild-type p53 stimulates STAT non-cell autonomously to promote tumor radioresistance. Communications Biology, 2021, 4, 374.	2.0	11
152	Vulnerability of IDH1-Mutant Cancers to Histone Deacetylase Inhibition via Orthogonal Suppression of DNA Repair. Molecular Cancer Research, 2021, 19, 2057-2067.	1.5	10
153	Poly(Lactic-co-Glycolic Acid) Nanoparticle Delivery of Peptide Nucleic Acids In Vivo. Methods in Molecular Biology, 2020, 2105, 261-281.	0.4	10
154	Regulation of the Cell-Intrinsic DNA Damage Response by the Innate Immune Machinery. International Journal of Molecular Sciences, 2021, 22, 12761.	1.8	10
155	Radiation sensitivity and sensitization in melanoma. Pigment Cell and Melanoma Research, 2013, 26, 928-930.	1.5	9
156	Clinical Activity and Safety of Cediranib and Olaparib Combination in Patients with Metastatic Pancreatic Ductal Adenocarcinoma without <i>BRCA</i> Mutation. Oncologist, 2021, 26, e1104-e1109.	1.9	9
157	Mlh1-dependent suppression of specific mutations induced in vivo by the food-borne carcinogen 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP). Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 594, 101-112.	0.4	8
158	MEN1 and FANCD2 mediate distinct mechanisms of DNA crosslink repair. DNA Repair, 2008, 7, 476-486.	1.3	8
159	Pharmacological methods to transcriptionally modulate double-strand break DNA repair. International Review of Cell and Molecular Biology, 2020, 354, 187-213.	1.6	8
160	Oncogene Expression in Isogenic, EBV-Positive and -Negative Burkitt Lymphoma Cell Lines. Intervirology, 1985, 23, 82-89.	1.2	7
161	Antispacer peptide nucleic acids for sequence-specific CRISPR-Cas9 modulation. Nucleic Acids Research, 2022, 50, e59-e59.	6.5	7
162	Tumor suppressor p53 stole the AKT in hypoxia. Journal of Clinical Investigation, 2015, 125, 2264-2266.	3.9	6

#	Article	IF	Citations
163	High-throughput Evaluation of Protein Migration and Localization after Laser Micro-Irradiation. Scientific Reports, 2019, 9, 3148.	1.6	6
164	"Micro―management of DNA repair genes by hypoxia. Cell Cycle, 2009, 8, 4009-4010.	1.3	5
165	Therapeutic Genome Mutagenesis Using Synthetic Donor DNA and Triplex-Forming Molecules. Methods in Molecular Biology, 2015, 1239, 39-73.	0.4	5
166	Targeted Mutagenesis Mediated by the Triple Helix Formation. , 1996, 57, 109-118.		4
167	Setting Standards in Gene Repair. Oligonucleotides, 2004, 14, 79-79.	2.7	4
168	Induction of aberrant crypt foci in DNA mismatch repair-deficient mice by the food-borne carcinogen 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP). Cancer Letters, 2006, 244, 79-85.	3.2	4
169	Triplex-Mediated Genome Targeting and Editing. Methods in Molecular Biology, 2014, 1114, 115-142.	0.4	4
170	RecA protein-mediated irreversible fixation of an oligodeoxyribonucleotide to specific site in DNA. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1996, 351, 117-124.	0.4	3
171	Radiation Resistance in Cancer Therapy: Meeting Summary and Research Opportunities Report of an NCI Workshop held September 1–3, 2010. Radiation Research, 2011, 176, e0016-e0021.	0.7	3
172	Genetic Instability Induced by Hypoxic Stress. , 2013, , 151-181.		3
173	Peptide Nucleic Acid-Mediated Recombination for Targeted Genomic Repair and Modification. Methods in Molecular Biology, 2014, 1050, 207-222.	0.4	3
174	New Translational Possibilities for Microenvironmental Modulation of Radiosensitivity. Radiation Research, 2011, 176, 412-414.	0.7	2
175	Mutagenesis in PMS2- and MSH2-deficient mice indicates differential protection from transversions and frameshifts. Carcinogenesis, 2000, 21, 1291-1296.	1.3	2
176	Abstract 6249: CBX-12: A low pH targeting alphalexâ,,¢-exatecan conjugate for the treatment of solid tumors. Cancer Research, 2020, 80, 6249-6249.	0.4	2
177	Unlocking PARP inhibitor efficacy for HRD-negative cancers using the alphalex tumor targeting platform inhibitor efficacy for HRD-negative cancers using the alphalex tumor targeting platform Journal of Clinical Oncology, 2019, 37, e14664-e14664.	0.8	2
178	Peptide nucleic acids as agents to modify target gene expression and function. International Journal of Peptide Research and Therapeutics, 2003, 10, 335-345.	0.9	1
179	Editorial [Hot Topic: Hypoxia and Tumor Progression (Guest Editors: Ranjit S. Bindra and Peter M.) Tj ETQq1 1 0. Molecular Medicine, 2009, 9, 399-400.	784314 rg 0.6	BT /Overlock 1
180	Precise Genome Modification Using Triplex Forming Oligonucleotides and Peptide Nucleic Acids. Advances in Experimental Medicine and Biology, 2016, , 93-110.	0.8	1

#	Article	IF	CITATIONS
181	Abstract LB169: Systemic Administration of an antibody/RNA complex results in tumor specific delivery of immunostimulatory RNAs and tumor growth suppression in a mouse model of melanoma. , 2021, , .		1
182	Genome Modification by Triplex-Forming Oligonucleotides. Perspectives in Antisense Science, 1999, , $167-179$.	0.2	1
183	Abstract 2981: Targeting solid tumor acidic microenvironment with an alphalex PARP inhibitor. , 2019, ,		1
184	Radiation Resistance in Cancer Therapy: meeting summary and research opportunities. Report of an NCI Workshop held September 1-3, 2010. Radiation Research, 2011, 176, e0016-21.	0.7	1
185	Regulation of DNA Repair by Hypoxia. , 2017, , 169-188.		O
186	Targeted Genome Modification Via Triple Helix Formation. , 2004, , 27-43.		O
187	Genomic predictors of biochemical failure following radical prostatectomy Journal of Clinical Oncology, 2016, 34, 114-114.	0.8	О
188	Induction of a BRCAness state by oncometabolites and exploitation by PARP inhibitors Journal of Clinical Oncology, 2017, 35, 11586-11586.	0.8	0
189	Peptide nucleic acids as agents to modify target gene expression and function. International Journal of Peptide Research and Therapeutics, 2005, 10, 335-345.	0.9	О
190	Peptide nucleic acids as agents to modify target gene expression and function. International Journal of Peptide Research and Therapeutics, 2003, 10, 335-345.	0.1	0
191	Radiation Resistance in Cancer Therapy: Meeting Summary and Research Opportunities: Report of an NCI Workshop held September 1-3, 2010. Radiation Research, 2011, , .	0.7	O