
Marco AntÃ'nio Peliky Fontes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9348152/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of a new angiotensin antagonist selective for angiotensin-(1–7): Evidence that the actions of angiotensin-(1–7) are mediated by specific angiotensin receptors. Brain Research Bulletin, 1994, 35, 293-298.	3.0	272
2	Central Mechanisms Underlying Short- And Long-Term Regulation Of The Cardiovascular System. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 261-268.	1.9	272
3	Medullary and supramedullary mechanisms regulating sympathetic vasomotor tone. Acta Physiologica Scandinavica, 2003, 177, 209-218.	2.2	239
4	Descending pathways mediating cardiovascular response from dorsomedial hypothalamic nucleus. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H2891-H2901.	3.2	158
5	Evidence that angiotensin-(1–7) plays a role in the central control of blood pressure at the ventro-lateral medulla acting through specific receptors. Brain Research, 1994, 665, 175-180.	2.2	141
6	Cardiovascular Responses Evoked by Leptin Acting on Neurons in the Ventromedial and Dorsomedial Hypothalamus. Hypertension, 2003, 42, 488-493.	2.7	124
7	Cardiovascular effects produced by microinjection of angiotensins and angiotensin antagonists into the ventrolateral medulla of freely moving rats. Brain Research, 1997, 750, 305-310.	2.2	91
8	The dorsomedial hypothalamus and the central pathways involved in the cardiovascular response to emotional stress. Neuroscience, 2011, 184, 64-74.	2.3	91
9	Role Of Angiotensin II Receptors In The Regulation Of Vasomotor Neurons In The Ventrolateral Medulla. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 467-472.	1.9	86
10	Descending vasomotor pathways from the dorsomedial hypothalamic nucleus: role of medullary raphe and RVLM. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R824-R832.	1.8	76
11	Cardiovascular effects produced by micro-injection of angiotensin-(1–7) on vasopressor and vasodepressor sites of the ventrolateral medulla. Brain Research, 1993, 613, 321-325.	2.2	69
12	Angiotensin peptides acting at rostral ventrolateral medulla contribute to hypertension of TGR(mREN2)27 rats. Physiological Genomics, 2000, 2, 137-142.	2.3	60
13	Cardiovascular and thermal responses evoked from the periaqueductal grey require neuronal activity in the hypothalamus. Journal of Physiology, 2009, 587, 1201-1215.	2.9	60
14	Blockade of Endogenous Angiotensin-(1–7) in the Hypothalamic Paraventricular Nucleus Reduces Renal Sympathetic Tone. Hypertension, 2005, 46, 341-348.	2.7	55
15	Chronic infusion of angiotensin receptor antagonists in the hypothalamic paraventricular nucleus prevents hypertension in a rat model of sleep apnea. Brain Research, 2011, 1368, 231-238.	2.2	53
16	Chronic infusion of angiotensin-(1-7) into the lateral ventricle of the brain attenuates hypertension in DOCA-salt rats. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H393-H400.	3.2	53
17	Role of periaqueductal gray on the cardiovascular response evoked by disinhibition of the dorsomedial hypothalamus. Brain Research, 2003, 984, 206-214.	2.2	52
18	What Drives The Tonic Activity Of Presympathetic Neurons In The Rostral Ventrolateral Medulla?. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 1049-1053.	1.9	50

#	Article	IF	CITATIONS
19	Emotional stress and sympathetic activity: Contribution of dorsomedial hypothalamus to cardiac arrhythmias. Brain Research, 2014, 1554, 49-58.	2.2	49
20	Angiotensin-(1-7) attenuates the anxiety and depression-like behaviors in transgenic rats with low brain angiotensinogen. Behavioural Brain Research, 2013, 257, 25-30.	2.2	48
21	Cardiovascular effects of angiotensin II in the rostral ventrolateral medulla: The push-pull hypothesis. Current Hypertension Reports, 2007, 9, 222-227.	3.5	44
22	Activation of angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis attenuates the cardiac reactivity to acute emotional stress. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1057-H1067.	3.2	43
23	Cholinergic Signaling Exerts Protective Effects in Models of Sympathetic Hyperactivity-Induced Cardiac Dysfunction. PLoS ONE, 2014, 9, e100179.	2.5	43
24	Contribution of infralimbic cortex in the cardiovascular response to acute stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R639-R650.	1.8	41
25	Reduced anxiety-like behavior in transgenic rats with chronically overproduction of angiotensin-(1–7): Role of the Mas receptor. Behavioural Brain Research, 2017, 331, 193-198.	2.2	39
26	A Glutamatergic Hypothalamomedullary Circuit Mediates Thermogenesis, but Not Heat Conservation, during Stress-Induced Hyperthermia. Current Biology, 2018, 28, 2291-2301.e5.	3.9	39
27	Functional asymmetry in the descending cardiovascular pathways from dorsomedial hypothalamic nucleus. Neuroscience, 2009, 164, 1360-1368.	2.3	38
28	Cardiovascular responses evoked by activation or blockade of GABAA receptors in the hypothalamic PVN are attenuated in transgenic rats with low brain angiotensinogen. Brain Research, 2012, 1448, 101-110.	2.2	37
29	Microinjection of muscimol into caudal periaqueductal gray lowers body temperature and attenuates increases in temperature and activity evoked from the dorsomedial hypothalamus. Brain Research, 2006, 1092, 129-137.	2.2	34
30	Microinjection of muscimol into the periaqueductal gray suppresses cardiovascular and neuroendocrine response to air jet stress in conscious rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R881-R890.	1.8	31
31	Angiotensin-(1–7) in the basolateral amygdala attenuates the cardiovascular response evoked by acute emotional stress. Brain Research, 2015, 1594, 183-189.	2.2	31
32	Brain angiotensin-(1–7)/Mas axis: A new target to reduce the cardiovascular risk to emotional stress. Neuropeptides, 2016, 56, 9-17.	2.2	31
33	Excitatory amino acid receptors in the periaqueductal gray mediate the cardiovascular response evoked by activation of dorsomedial hypothalamic neurons. Neuroscience, 2006, 139, 1129-1139.	2.3	29
34	Cardiovascular effects produced by activation of GABA receptors in the rostral ventrolateral medulla of conscious rats. Neuroscience, 2007, 144, 336-343.	2.3	29
35	Functional topography of cardiovascular regulation along the rostrocaudal axis of the rat posterior insular cortex. Clinical and Experimental Pharmacology and Physiology, 2016, 43, 484-493.	1.9	29
36	Asymmetry in the control of cardiac performance by dorsomedial hypothalamus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R664-R674.	1.8	28

#	Article	IF	CITATIONS
37	The physiological role of AT1 receptors in the ventrolateral medulla. Brazilian Journal of Medical and Biological Research, 2000, 33, 643-652.	1.5	27
38	Alterations of the renin-angiotensin system at the RVLM of transgenic rats with low brain angiotensinogen. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R428-R433.	1.8	27
39	Chronic overexpression of angiotensin-(1-7) in rats reduces cardiac reactivity to acute stress and dampens anxious behavior. Stress, 2017, 20, 189-196.	1.8	26
40	Vagus nerve regulates the phagocytic and secretory activity of resident macrophages in the liver. Brain, Behavior, and Immunity, 2019, 81, 444-454.	4.1	26
41	Asymmetric sympathetic output: The dorsomedial hypothalamus as a potential link between emotional stress and cardiac arrhythmias. Autonomic Neuroscience: Basic and Clinical, 2017, 207, 22-27.	2.8	23
42	Blockade of AT1 receptors in the rostral ventrolateral medulla increases sympathetic activity under hypoxic conditions. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R733-R740.	1.8	22
43	Synchronized activation of sympathetic vasomotor, cardiac, and respiratory outputs by neurons in the midbrain colliculi. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R599-R610.	1.8	22
44	GABA-containing liposomes: neuroscience applications and translational perspectives for targeting neurological diseases. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 781-788.	3.3	18
45	Coordinated autonomic and respiratory responses evoked by alerting stimuli: Role of the midbrain colliculi. Respiratory Physiology and Neurobiology, 2016, 226, 87-93.	1.6	16
46	Murine model to study brain, behavior and immunity during hepatic encephalopathy. World Journal of Hepatology, 2014, 6, 243.	2.0	16
47	Renal sympathetic nerve activity is increased in monosodium glutamate induced hyperadipose rats. Neuroscience Letters, 2012, 522, 118-122.	2.1	15
48	Commentaries on Viewpoint: Can elite athletes benefit from dietary nitrate supplementation?. Journal of Applied Physiology, 2015, 119, 762-769.	2.5	15
49	Cardiovascular and behavioral effects produced by administration of liposome-entrapped GABA into the rat central nervous system. Neuroscience, 2015, 285, 60-69.	2.3	15
50	The Nitric oxide/ _C GMP/KATP pathway mediates systemic and central antinociception induced by resistance exercise in rats. International Journal of Neuroscience, 2015, 125, 765-773.	1.6	15
51	Chronic Treatment with Ivabradine Does Not Affect Cardiovascular Autonomic Control in Rats. Frontiers in Physiology, 2016, 7, 305.	2.8	15
52	Autonomic and cardiovascular consequences resulting from experimental hemorrhagic stroke in the left or right intermediate insular cortex in rats. Autonomic Neuroscience: Basic and Clinical, 2020, 227, 102695.	2.8	15
53	Evidence that remodeling of insular cortex neurovascular unit contributes to hypertensionâ€related sympathoexcitation. Physiological Reports, 2017, 5, e13156.	1.7	14
54	Liposome-entrapped GABA modulates the expression of nNOS in NG108-15 cells. Journal of Neuroscience Methods, 2016, 273, 55-63.	2.5	13

#	Article	IF	CITATIONS
55	Haemorrhage increases the pressor effect of angiotensin-(1–7) but not of angiotensin II at the rat rostral ventrolateral medulla. Journal of Hypertension, 1999, 17, 1145-1152.	0.5	12
56	Evidence for a functional cardiac interaction between losartan and angiotensin-(1-7) receptors revealed by orthostatic tilting test in rats. British Journal of Pharmacology, 2005, 144, 755-760.	5.4	12
57	Cardiovascular effects produced by nitric oxiderelated drugs in the caudal ventrolateral medulla. NeuroReport, 1999, 10, 731-735.	1.2	11
58	Baroreflex control of heart rate and renal sympathetic nerve activity in rats with low brain angiotensinogen. Neuropeptides, 2008, 42, 159-168.	2.2	11
59	Activation of 5-HT receptors in the periaqueductal gray attenuates the tachycardia evoked from dorsomedial hypothalamus. Autonomic Neuroscience: Basic and Clinical, 2009, 148, 36-43.	2.8	11
60	Involvement of GABAergic and Adrenergic Neurotransmissions on Paraventricular Nucleus of Hypothalamus in the Control of Cardiac Function. Frontiers in Physiology, 2018, 9, 670.	2.8	11
61	Alamandine but not angiotensin-(1–7) produces cardiovascular effects at the rostral insular cortex. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R513-R521.	1.8	11
62	Disinhibition of the midbrain colliculi unmasks coordinated autonomic, respiratory, and somatomotor responses to auditory and visual stimuli. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1025-R1035.	1.8	10
63	Ghrelin potentiates cardiac reactivity to stress by modulating sympathetic control and beta-adrenergic response. Life Sciences, 2018, 196, 84-92.	4.3	10
64	Pressor action of angiotensin I at the ventrolateral medulla: effect of selective angiotensin blockade. Immunopharmacology, 1996, 33, 305-307.	2.0	9
65	Bezold–Jarisch reflex in sino-aortic denervated malnourished rats. Autonomic Neuroscience: Basic and Clinical, 2011, 162, 48-53.	2.8	9
66	Spinophilin regulates central angiotensin II-mediated effect on blood pressure. Journal of Molecular Medicine, 2011, 89, 1219-1229.	3.9	9
67	Paraventricular nucleus of hypothalamus participates in the sympathetic modulation and spontaneous fluctuation of baroreflex during head up tilt in unanesthetized rats. Neuroscience Letters, 2014, 558, 1-7.	2.1	9
68	Cardiovascular reactivity after blockade of angiotensin AT ₁ receptors in the experimental model of tilting test in conscious rats. British Journal of Pharmacology, 2008, 153, 966-971.	5.4	8
69	Angiotensin-converting enzyme 2 activator, DIZE in the basolateral amygdala attenuates the tachycardic response to acute stress by modulating glutamatergic tone. Neuropeptides, 2020, 83, 102076.	2.2	8
70	Renal sympathetic denervation for resistant hypertension: where do we stand after more than a decade. Jornal Brasileiro De Nefrologia: Orgao Oficial De Sociedades Brasileira E Latino-Americana De Nefrologia, 2020, 42, 67-76.	0.9	8
71	Enhanced isoproterenol-induced cardiac hypertrophy in transgenic rats with low brain angiotensinogen. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2371-H2376.	3.2	7
72	Sympathoinhibition to Bezold–Jarisch reflex is attenuated in protein malnourished rats. Neuroscience Letters, 2011, 488, 129-132.	2.1	7

#	Article	IF	CITATIONS
73	Excitatory amino acid receptors in the dorsomedial hypothalamus are involved in the cardiovascular and behavioural chemoreflex responses. Experimental Physiology, 2011, 96, 73-84.	2.0	7
74	Liposome-Encapsulated Neuropeptides for Site-Specific Microinjection. Methods in Molecular Biology, 2011, 789, 343-355.	0.9	7
75	Excitatory Amino Acid Receptors Mediate Asymmetry and Lateralization in the Descending Cardiovascular Pathways from the Dorsomedial Hypothalamus. PLoS ONE, 2014, 9, e112412.	2.5	7
76	Stating asymmetry in neural pathways: methodological trends in autonomic neuroscience. International Journal of Neuroscience, 2018, 128, 1078-1085.	1.6	6
77	Involvement of the paraventricular nucleus (PVN) of hypothalamus in the cardiovascular alterations to head up tilt in conscious rats. Neuroscience Research, 2012, 72, 270-274.	1.9	5
78	Cardiovascular reactivity to emotional stress: The hidden challenge for pets in the urbanized environment. Physiology and Behavior, 2019, 207, 151-158.	2.1	5
79	Ventromedial medullary pathway mediating cardiac responses evoked from periaqueductal gray. Autonomic Neuroscience: Basic and Clinical, 2020, 228, 102716.	2.8	5
80	Tachycardia evoked from insular stroke in rats is dependent on glutamatergic neurotransmission in the dorsomedial hypothalamus. European Journal of Neurology, 2021, 28, 3640-3649.	3.3	5
81	Peptide fragments of bradykinin show unexpected biological activity not mediated by B ₁ or B ₂ receptors. British Journal of Pharmacology, 2022, 179, 3061-3077.	5.4	5
82	Comments on Point:Counterpoint: The dominant contributor to systemic hypertension: Chronic activation of the sympathetic nervous system vs. Activation of the intrarenal renin-angiotensin system. Journal of Applied Physiology, 2010, 109, 2003-2014.	2.5	3
83	Evidence that central action of paraquat interferes in the dipsogenic effect of Ang II. NeuroToxicology, 2010, 31, 305-309.	3.0	2
84	Commentaries on Viewpoint: The ongoing need for good physiological investigation: Obstructive sleep apnea in HIV patients as a paradigm. Journal of Applied Physiology, 2015, 118, 247-250.	2.5	2
85	Increased Jejunal Absorption of Clucose in Rats Submitted to Blockade of GABAA Receptors in the Hypothalamic Paraventricular Nucleus. Open Neuroendocrinology Journal (Online), 2011, 4, 120-126.	0.4	2
86	Intracerebroventricular injection of liposomeâ€entrapped GABA attenuates the renal sympathetic nerve activity response evoked by central administration of bicuculline in anesthetized rats. FASEB Journal, 2012, 26, 1091.38.	0.5	1
87	Centrally acting antihypertensives change the psychogenic cardiovascular reactivity. Fundamental and Clinical Pharmacology, 2021, 35, 892-905.	1.9	Ο
88	Autonomic response after hemorrhagic stroke in the right insular cortex: What is the common pathophysiology in rat and human?; Reply. Autonomic Neuroscience: Basic and Clinical, 2021, 231, 102772.	2.8	0
89	Pronounced fall in renal sympathetic activity after blockade of endogenous angiotensinâ€(1â€7) in the paraventricular nucleus during hyperosmolar conditions. FASEB Journal, 2008, 22, 1236.1.	0.5	0
90	Central administration of angiotensinâ€(1â€7) markedly reduces the tachycardia evoked by acute psychological stress exposure. FASEB Journal, 2009, 23, 609.5.	0.5	0

#	Article	IF	CITATIONS
91	Comparison of the cardiovascular effects produced by interference with GABA transmission in the left and right sides of dorsomedial hypothalamus in conscious rats. FASEB Journal, 2012, 26, 1091.5.	0.5	0
92	Activation of NMDA receptors results in different autonomic and cardiovascular responses along the rostrocaudal axis of the insular cortex. FASEB Journal, 2013, 27, 1118.5.	0.5	0
93	Editorial: Stress-Related Diseases and Dysfunctions. Frontiers in Physiology, 2022, 13, 896842.	2.8	0