Joshua A Bittle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9347637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transient mixing behavior of a supercritical fluid injected into supercritical and subcritical environments. Physics of Fluids, 2022, 34, .	4.0	7
2	Simultaneous rainbow schlieren deflectometry and OH* chemiluminescence imaging of a diesel spray flame in constant pressure flow rig. Proceedings of the Combustion Institute, 2021, 38, 5557-5565.	3.9	8
3	Comparing Global Spray Combustion Characteristics and Local Shot-to-Shot Variations in a Reacting <i>n</i> -Heptane Spray. Journal of Engineering for Gas Turbines and Power, 2021, 143, .	1.1	4
4	Implications of real-gas behavior on refractive index calculations for optical diagnostics of fuel–air mixing at high pressures. Combustion and Flame, 2020, 214, 47-56.	5.2	10
5	Phase boundary detection in transient, evaporating high-pressure fuel sprays by rainbow schlieren deflectometry. Applied Optics, 2019, 58, 6791.	1.8	12
6	Demonstrating a Direct-Injection Constant-Volume Combustion Chamber As a Validation Tool for Chemical Kinetic Modeling of Liquid Fuels. , 2018, , .		1
7	Evaluating the Potential of a Direct-Injection Constant-Volume Combustion Chamber as a Tool to Validate Chemical-Kinetic Models for Liquid Fuels. Combustion Science and Technology, 2017, 189, 1-23.	2.3	11
8	High-Speed Rainbow Schlieren Deflectometry of n-Heptane Sprays Using a Common Rail Diesel Injector. Journal of Energy Resources Technology, Transactions of the ASME, 2017, 139, .	2.3	1
9	Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry. Applied Optics, 2017, 56, 8385.	1.8	14
10	Experimental measurements of <i>n</i> -heptane liquid penetration distance and spray cone angle for steady conditions relevant to early direct-injection low-temperature combustion in diesel engines. International Journal of Engine Research, 2016, 17, 371-390.	2.3	8
11	A computationally efficient combustion trajectory prediction model developed for real-time diesel combustion control. International Journal of Engine Research, 2016, 17, 246-258.	2.3	Ο
12	Influencing Parameters of Brake Fuel Conversion Efficiency with Diesel / Gasoline Operation in a Medium-Duty Diesel Engine. , 2013, , .		5
13	Biodiesel Imposed System Responses in a Medium-Duty Diesel Engine. , 2010, , .		3
14	Efficiency Considerations of Later-Phased Low Temperature Diesel Combustion. , 2010, , .		8
15	Biodiesel Effects on Influencing Parameters of Brake Fuel Conversion Efficiency in a Medium Duty Diesel Engine. Journal of Engineering for Gas Turbines and Power, 2010, 132, .	1.1	11
16	Biodiesel Fuel's Effects on Influencing Parameters of Brake Fuel Conversion Efficiency in a Medium Duty Diesel Engine. , 2009, , .		7
17	The Impact of Biodiesel on Injection Timing and Pulsewidth in a Common-Rail Medium-Duty Diesel Engine. SAE International Journal of Engines, 0, 2, 312-325.	0.4	31
18	Characterizing the Influence of EGR and Fuel Pressure on the Emissions in Low Temperature Diesel Combustion. , 0, , .		3

#	Article	IF	CITATIONS
19	Heat Release Parameters to Assess Low Temperature Combustion Attainment. , 0, , .		3