
Kenneth Dalgarno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9346862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Densification mechanism and microstructural evolution in selective laser sintering of Al–12Si powders. Journal of Materials Processing Technology, 2011, 211, 113-121.	3.1	131
2	3D printed Sr-containing composite scaffolds: Effect of structural design and material formulation towards new strategies for bone tissue engineering. Composites Science and Technology, 2020, 191, 108069.	3.8	78
3	Manufacture and Characterisation of Porous PLA Scaffolds. Procedia CIRP, 2016, 49, 33-38.	1.0	58
4	A Comparison of Osteoblast and Osteoclast In Vitro Co-Culture Models and Their Translation for Preclinical Drug Testing Applications. International Journal of Molecular Sciences, 2020, 21, 912.	1.8	37
5	TNF-related apoptosis-inducing ligand (TRAIL) for bone sarcoma treatment: Pre-clinical and clinical data. Cancer Letters, 2017, 409, 66-80.	3.2	32
6	Osseointegration of porous apatite-wollastonite and poly(lactic acid) composite structures created using 3D printing techniques. Materials Science and Engineering C, 2018, 90, 1-7.	3.8	31
7	The interplay between chondrocyte spheroids and mesenchymal stem cells boosts cartilage regeneration within a 3D natural-based hydrogel. Scientific Reports, 2019, 9, 14630.	1.6	31
8	Multi-compartment scaffold fabricated via 3D-printing as in vitro co-culture osteogenic model. Scientific Reports, 2018, 8, 15130.	1.6	30
9	Centrifugally spun PHBV micro and nanofibres. Materials Science and Engineering C, 2017, 76, 190-195.	3.8	28
10	An experimental investigation on micro machining of fine-grained graphite. International Journal of Advanced Manufacturing Technology, 2014, 72, 943-953.	1.5	26
11	Development of multisubstituted hydroxyapatite nanopowders as biomedical materials for bone tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2017, 105, 1775-1785.	2.1	26
12	Mesenchymal stromal cells for bone sarcoma treatment: Roadmap to clinical practice. Journal of Bone Oncology, 2019, 16, 100231.	1.0	26
13	Reactive jet impingement bioprinting of high cell density gels for bone microtissue fabrication. Biofabrication, 2019, 11, 015014.	3.7	26
14	Assessment of Migration of Human MSCs through Fibrin Hydrogels as a Tool for Formulation Optimisation. Materials, 2018, 11, 1781.	1.3	24
15	Polyelectrolyte multi-layers assembly of SiCHA nanopowders and collagen type I on aminolysed PLA films to enhance cell-material interactions. Colloids and Surfaces B: Biointerfaces, 2017, 159, 445-453.	2.5	19
16	Strategies for Enhancing Polyester-Based Materials for Bone Fixation Applications. Molecules, 2021, 26, 992.	1.7	19
17	Osteoinduction of 3D printed particulate and short-fibre reinforced composites produced using PLLA and apatite-wollastonite. Composites Science and Technology, 2019, 184, 107834.	3.8	18
18	Short phosphate glass fiber - PLLA composite to promote bone mineralization. Materials Science and Engineering C, 2019, 104, 109929.	3.8	14

Kenneth Dalgarno

#	Article	IF	CITATIONS
19	Fatigue behaviour of laser sintered Nylon 12 in rotating and reversed bending tests. Materials Science and Technology, 2015, 31, 904-911.	0.8	12
20	Cost-effective microvalve-assisted bioprinter for tissue engineering. Bioprinting, 2019, 13, e00043.	2.9	12
21	High throughput physiological micro-models for in vitro pre-clinical drug testing: a review of engineering systems approaches. Progress in Biomedical Engineering, 2020, 2, 022001.	2.8	12
22	Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. PLoS ONE, 2020, 15, e0240237.	1.1	11
23	Personalized foot orthoses with embedded temperature sensing: Proof of concept and relationship with activity. Medical Engineering and Physics, 2014, 36, 9-15.	0.8	8
24	Processing of Sr2+ Containing Poly L-Lactic Acid-Based Hybrid Composites for Additive Manufacturing of Bone Scaffolds. Frontiers in Materials, 2020, 7, .	1.2	8
25	Reliable inkjet printing of chondrocytes and MSCs using reservoir agitation. Biofabrication, 2020, 12, 045024.	3.7	8
26	Microfluidic chip fabrication and performance analysis of 3D printed material for use in microfluidic nucleic acid amplification applications. Journal of Micromechanics and Microengineering, 2021, 31, 035005.	1.5	8
27	Droplet-based bioprinting enables the fabrication of cell–hydrogel–microfibre composite tissue precursors. Bio-Design and Manufacturing, 2022, 5, 512-528.	3.9	8
28	A Chondrosphere-Based Scaffold Free Approach to Manufacture an <i>In Vitro</i> Articular Cartilage Model. Tissue Engineering - Part A, 2022, 28, 84-93.	1.6	7
29	Osteogenic potential of heterogeneous and CD271-enriched mesenchymal stromal cells cultured on apatite-wollastonite 3D scaffolds. BMC Biomedical Engineering, 2019, 1, 16.	1.7	6
30	Bioprinting of Cell‣aden Hydrogels onto Titanium Alloy Surfaces to Produce a Bioactive Interface. Macromolecular Bioscience, 2022, 22, e2200071.	2.1	3
31	Microvalve Bioprinting of MSC-Chondrocyte Co-Cultures. Cells, 2021, 10, 3329.	1.8	Ο
32	Title is missing!. , 2020, 15, e0240237.		0
33	Title is missing!. , 2020, 15, e0240237.		0
34	Title is missing!. , 2020, 15, e0240237.		0
35	Title is missing!. , 2020, 15, e0240237.		0
36	Title is missing!. , 2020, 15, e0240237.		0

#	Article	IF	CITATIONS
37	Title is missing!. , 2020, 15, e0240237.		0