
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/934678/publications.pdf Version: 2024-02-01

SADAH HAKE

#	Article	IF	CITATIONS
1	The power of classic maize mutants: Driving forward our fundamental understanding of plants. Plant Cell, 2022, 34, 2505-2517.	3.1	10
2	Gene duplication at the <i>Fascicled ear1</i> locus controls the fate of inflorescence meristem cells in maize. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
3	A mixed-linkage (1,3;1,4)-β-D-glucan specific hydrolase mediates dark-triggered degradation of this plant cell wall polysaccharide. Plant Physiology, 2021, 185, 1559-1573.	2.3	14
4	Evolution of the grass leaf by primordium extension and petiole-lamina remodeling. Science, 2021, 374, 1377-1381.	6.0	18
5	Using wild relatives to improve maize. Science, 2019, 365, 640-641.	6.0	10
6	Reconstructing the Transcriptional Ontogeny of Maize and Sorghum Supports an Inverse Hourglass Model of Inflorescence Development. Current Biology, 2019, 29, 3410-3419.e3.	1.8	40
7	The Second Site Modifier, Sympathy for the ligule, Encodes a Homolog of Arabidopsis ENHANCED DISEASE RESISTANCE4 and Rescues the Liguleless narrow Maize Mutant. Plant Cell, 2019, 31, 1829-1844.	3.1	17
8	Identification of cup-shaped cotyledon: New Ways to Think about Organ Initiation. Plant Cell, 2019, 31, 1202-1203.	3.1	3
9	Tasselseed5 overexpresses a wound-inducible enzyme, ZmCYP94B1, that affects jasmonate catabolism, sex determination, and plant architecture in maize. Communications Biology, 2019, 2, 114.	2.0	42
10	Drawing a Line: Grasses and Boundaries. Plants, 2019, 8, 4.	1.6	23
11	<i>CRF-interacting factor1</i> Regulates Shoot Architecture and Meristem Determinacy in Maize. Plant Cell, 2018, 30, 360-374.	3.1	82
12	The Maize MID-COMPLEMENTING ACTIVITY Homolog CELL NUMBER REGULATOR13/NARROW ODD DWARF Coordinates Organ Growth and Tissue Patterning. Plant Cell, 2017, 29, 474-490.	3.1	52
13	KNOTTED1 Cofactors, BLH12 and BLH14, Regulate Internode Patterning and Vein Anastomosis in Maize. Plant Cell, 2017, 29, 1105-1118.	3.1	64
14	Keep on growing: building and patterning leaves in the grasses. Current Opinion in Plant Biology, 2016, 29, 80-86.	3.5	28
15	Homeobox Transcription Factors and the Regulation of Meristem Development and Maintenance. , 2016, , 215-228.		4
16	Functionally different PIN proteins control auxin flux during bulbil development in Agave tequilana. Journal of Experimental Botany, 2015, 66, 3893-3905.	2.4	28
17	Organogenesis in plants: initiation and elaboration of leaves. Trends in Genetics, 2015, 31, 300-306.	2.9	70
18	Diverse functions of KNOX transcription factors in the diploid body plan of plants. Current Opinion in Plant Biology, 2015, 27, 91-96.	3.5	72

#	Article	IF	CITATIONS
19	Transcriptomic Analyses Indicate That Maize Ligule Development Recapitulates Gene Expression Patterns That Occur during Lateral Organ Initiation Â. Plant Cell, 2015, 26, 4718-4732.	3.1	99
20	Genetic, evolutionary and plant breeding insights from the domestication of maize. ELife, 2015, 4, .	2.8	81
21	A Division in PIN-Mediated Auxin Patterning during Organ Initiation in Grasses. PLoS Computational Biology, 2014, 10, e1003447.	1.5	112
22	Unequal Redundancy in Maize <i>knotted1 homeobox</i> Genes Â. Plant Physiology, 2014, 164, 229-238.	2.3	23
23	Maize <i>SBP-box</i> transcription factors <i>unbranched2</i> and <i>unbranched3</i> affect yield traits by regulating the rate of lateral primordia initiation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18775-18780.	3.3	204
24	Genome-Wide Study of <i>KNOX</i> Regulatory Network Reveals Brassinosteroid Catabolic Genes Important for Shoot Meristem Function in Rice Â. Plant Cell, 2014, 26, 3488-3500.	3.1	107
25	The <i>dicer-like1</i> Homolog <i>fuzzy tassel</i> Is Required for the Regulation of Meristem Determinacy in the Inflorescence and Vegetative Growth in Maize. Plant Cell, 2014, 26, 4702-4717.	3.1	35
26	Natural Variation at <i>sympathy for the ligule</i> Controls Penetrance of the Semidominant <i>Liguleless narrow-R</i> Mutation in <i>Zea mays</i> . G3: Genes, Genomes, Genetics, 2014, 4, 2297-2306.	0.8	16
27	Gene regulatory interactions at lateral organ boundaries in maize. Development (Cambridge), 2014, 141, 4590-4597.	1.2	68
28	Regulatory modules controlling maize inflorescence architecture. Genome Research, 2014, 24, 431-443.	2.4	160
29	The <i>Liguleless narrow</i> mutation affects proximal-distal signaling and leaf growth. Development (Cambridge), 2013, 140, 405-412.	1.2	74
30	Unraveling the KNOTTED1 regulatory network in maize meristems. Genes and Development, 2012, 26, 1685-1690.	2.7	258
31	How a leaf gets its shape. Current Opinion in Plant Biology, 2011, 14, 24-30.	3.5	147
32	Overexpression of the maize <i>Corngrass1</i> microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17550-17555.	3.3	185
33	The maize <i>milkweed pod1</i> mutant reveals a mechanism to modify organ morphology. Genesis, 2010, 48, 416-423.	0.8	13
34	The maize SBP-box transcription factor encoded by <i>tasselsheath4</i> regulates bract development and the establishment of meristem boundaries. Development (Cambridge), 2010, 137, 1243-1250.	1.2	217
35	The Maize Transcription Factor KNOTTED1 Directly Regulates the Gibberellin Catabolism Gene <i>ga2ox1</i> Â Â. Plant Cell, 2009, 21, 1647-1658.	3.1	272
36	The Interaction of <i>knotted1</i> and <i>thick tassel dwarf1</i> in Vegetative and Reproductive Meristems of Maize. Genetics, 2009, 181, 1693-1697.	1.2	20

#	Article	IF	CITATIONS
37	A Recommendation for Naming Transcription Factor Proteins in the Grasses. Plant Physiology, 2009, 149, 4-6.	2.3	45
38	<i>bearded-ear</i> Encodes a MADS Box Transcription Factor Critical for Maize Floral Development Â. Plant Cell, 2009, 21, 2578-2590.	3.1	154
39	Mutagenesis – the Key to Genetic Analysis. , 2009, , 63-84.		8
40	Translational Biology: From Arabidopsis Flowers to Grass Inflorescence Architecture. Plant Physiology, 2009, 149, 38-45.	2.3	82
41	Big impacts by small RNAs in plant development. Current Opinion in Plant Biology, 2009, 12, 81-86.	3.5	207
42	Distal Expression of <i>knotted1</i> in Maize Leaves Leads to Reestablishment of Proximal/Distal Patterning and Leaf Dissection Â. Plant Physiology, 2009, 151, 1878-1888.	2.3	47
43	The art and design of genetic screens: maize. Nature Reviews Genetics, 2008, 9, 192-203.	7.7	87
44	<i>KNOX</i> Lost the <i>OX</i> : The <i>Arabidopsis KNATM</i> Gene Defines a Novel Class of KNOX Transcriptional Regulators Missing the Homeodomain. Plant Cell, 2008, 20, 875-887.	3.1	113
45	The <i>milkweed pod1</i> Gene Encodes a KANADI Protein That Is Required for Abaxial/Adaxial Patterning in Maize Leaves. Plant Cell, 2008, 20, 2073-2087.	3.1	79
46	barren inflorescence2 Encodes a Co-Ortholog of the PINOID Serine/Threonine Kinase and Is Required for Organogenesis during Inflorescence and Vegetative Development in Maize. Plant Physiology, 2007, 144, 1000-1011.	2.3	170
47	Flowering and determinacy in maize. Journal of Experimental Botany, 2007, 58, 909-916.	2.4	75
48	The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nature Genetics, 2007, 39, 1517-1521.	9.4	355
49	The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature Genetics, 2007, 39, 544-549.	9.4	583
50	Advances in maize genomics: the emergence of positional cloning. Current Opinion in Plant Biology, 2006, 9, 164-171.	3.5	68
51	ramosa2 Encodes a LATERAL ORGAN BOUNDARY Domain Protein That Determines the Fate of Stem Cells in Branch Meristems of Maize. Plant Cell, 2006, 18, 574-585.	3.1	296
52	thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development (Cambridge), 2005, 132, 1235-1245.	1.2	264
53	The establishment of axial patterning in the maize leaf. Development (Cambridge), 2004, 131, 3921-3929.	1.2	24
54	From Endonucleases to Transcription Factors: Evolution of the AP2 DNA Binding Domain in Plants[W]. Plant Cell, 2004, 16, 2265-2277.	3.1	227

#	Article	IF	CITATIONS
55	Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7815-7820.	3.3	105
56	The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties. Nucleic Acids Research, 2004, 32, 1710-1720.	6.5	113
5 7	Exploiting quantitative trait loci in gene discovery. Genes and Development, 2004, 18, 597-601.	2.7	7
58	The Dominant Mutant Wavy auricle in blade1 Disrupts Patterning in a Lateral Domain of the Maize Leaf. Plant Physiology, 2004, 135, 300-308.	2.3	34
59	Competence to Respond to Floral Inductive Signals Requires the Homeobox Genes PENNYWISE and POUND-FOOLISH. Current Biology, 2004, 14, 812-817.	1.8	118
60	THE ROLE OFKNOXGENES IN PLANT DEVELOPMENT. Annual Review of Cell and Developmental Biology, 2004, 20, 125-151.	4.0	386
61	MicroRNAs: A Role in Plant Development. Current Biology, 2003, 13, R851-R852.	1.8	36
62	The Interaction of Two Homeobox Genes, BREVIPEDICELLUS and PENNYWISE, Regulates Internode Patterning in the Arabidopsis Inflorescence. Plant Cell, 2003, 15, 1717-1727.	3.1	253
63	Analysis of the Competence to Respond to KNOTTED1 Activity in Arabidopsis Leaves Using a Steroid Induction System. Plant Physiology, 2003, 131, 1671-1680.	2.3	41
64	The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes and Development, 2003, 17, 2088-2093.	2.7	207
65	Quantitative Trait Locus Analysis of Leaf Dissection in Tomato Using <i>Lycopersicon pennellii</i> Segmental Introgression Lines. Genetics, 2003, 165, 1541-1550.	1.2	66
66	Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9579-9584.	3.3	174
67	The Control of Spikelet Meristem Identity by the branched silkless1 Gene in Maize. Science, 2002, 298, 1238-1241.	6.0	270
68	The Gibberellin Pathway Mediates KNOTTED1-Type Homeobox Function in Plants with Different Body Plans. Current Biology, 2002, 12, 1557-1565.	1.8	399
69	Maize transgene results in Mexico are artefacts (see editorial footnote). Nature, 2002, 416, 601-602.	13.7	71
70	Expression Patterns and Mutant Phenotype of <i>teosinte branched1</i> Correlate With Growth Suppression in Maize and Teosinte. Genetics, 2002, 162, 1927-1935.	1.2	263
71	The indeterminate floral apex1 gene regulates meristem determinacy and identity in the maize inflorescence. Development (Cambridge), 2002, 129, 2629-38.	1.2	30
72	Genetic Evidence and the Origin of Maize. Latin American Antiquity, 2001, 12, 84-86.	0.3	39

#	Article	IF	CITATIONS
73	The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes and Development, 2001, 15, 2755-2766.	2.7	299
74	<i>barren inflorescence2</i> regulates axillary meristem development in the maize inflorescence. Development (Cambridge), 2001, 128, 2881-2891.	1.2	127
75	Knots in the family tree: evolutionary relationships and functions of knox homeobox genes. Plant Molecular Biology, 2000, 42, 151-166.	2.0	179
76	Gnarley1 Is a Dominant Mutation in the knox4 Homeobox Gene Affecting Cell Shape and Identity. Plant Cell, 1999, 11, 1239-1252.	3.1	76
77	Leaf Senescence Is Delayed in Tobacco Plants Expressing the Maize Homeobox Gene knotted1 under the Control of a Senescence-Activated Promoter. Plant Cell, 1999, 11, 1073-1080.	3.1	174
78	Gnarley1 Is a Dominant Mutation in the knox4 Homeobox Gene Affecting Cell Shape and Identity. Plant Cell, 1999, 11, 1239.	3.1	9
79	Isolation and characterization of two knotted-like homeobox genes from tomato. Plant Molecular Biology, 1998, 36, 417-425.	2.0	63
80	Regulation of leaf initiation by the terminal ear 1 gene of maize. Nature, 1998, 393, 166-168.	13.7	141
81	Morphogenesis on the move: cell-to-cell trafficking of plant regulatory proteins. Current Opinion in Genetics and Development, 1997, 7, 495-500.	1.5	41
82	KNAT1 Induces Lobed Leaves with Ectopic Meristems When Overexpressed in Arabidopsis. Plant Cell, 1996, 8, 1277.	3.1	83
83	Deficiency analysis of female gametogenesis in maize. Genesis, 1995, 16, 44-63.	3.1	50
84	Expression ofknotted1 marks shoot meristem formation during maize embryogenesis. Genesis, 1995, 16, 344-348.	3.1	93
85	TheKnotted leaf blade is a mosaic of blade, sheath, and auricle identities. Genesis, 1994, 15, 401-414.	3.1	33
86	A knotted1-Like Homeobox Gene in Arabidopsis Is Expressed in the Vegetative Meristem and Dramatically Alters Leaf Morphology When Overexpressed in Transgenic Plants. Plant Cell, 1994, 6, 1859.	3.1	126
87	Maize Floral Development: New Genes and Old Mutants. Plant Cell, 1993, 5, 1205.	3.1	10
88	Identification and Molecular Characterization of ZAG1, the Maize Homolog of the Arabidopsis Floral Homeotic Gene AGAMOUS. Plant Cell, 1993, 5, 729.	3.1	47
89	The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature, 1991, 350, 241-243.	13.7	749
90	Mutant characters of Knotted maize leaves are determined in the innermost tissue layers. Developmental Biology, 1990, 141, 203-210.	0.9	104

#	Article	IF	CITATIONS
91	Cloning <i>Knotted,</i> the dominant morphological mutant in maize using <i>Ds2</i> as a transposon tag. EMBO Journal, 1989, 8, 15-22.	3.5	160
92	Tissue interactions in plant development. BioEssays, 1987, 6, 58-60.	1.2	3
93	Analysis of genetic mosaics shows that the extra epidermal cell divisions in Knotted mutant maize plants are induced by adjacent mesophyll cells. Nature, 1986, 320, 621-623.	13.7	146
94	DEVELOPMENTAL GENETICS OF MUTANTS THAT SPECIFY KNOTTED LEAVES IN MAIZE. Genetics, 1985, 111, 617-634.	1.2	123
95	Molecular analyses of genetically stable mutants of the maize Adh1 gene. Molecular Genetics and Genomics, 1984, 194, 42-48.	2.4	12
96	Regulatory mutants of the maize Adh1 gene caused by DNA insertions. Nature, 1982, 300, 542-544.	13.7	91
97	The genome of Zea mays, its organization and homology to related grasses. Chromosoma, 1980, 79, 251-270	1.0	170