John J Mccarthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9346747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Senolytic treatment rescues blunted muscle hypertrophy in old mice. GeroScience, 2022, 44, 1925-1940.	2.1	25
2	Myonuclei Can Replicate DNA. FASEB Journal, 2022, 36, .	0.2	0
3	The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise. Journal of Physiology, 2021, 599, 845-861.	1.3	76
4	Ribosome biogenesis and degradation regulate translational capacity during muscle disuse and reloading. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 130-143.	2.9	32
5	An intron variant of the GLI family zinc finger 3 (GLI3) gene differentiates resistance trainingâ€induced muscle fiber hypertrophy in younger men. FASEB Journal, 2021, 35, e21587.	0.2	2
6	Early satellite cell communication creates a permissive environment for long-term muscle growth. IScience, 2021, 24, 102372.	1.9	39
7	Mechanical overloadâ€induced muscleâ€derived extracellular vesicles promote adipose tissue lipolysis. FASEB Journal, 2021, 35, e21644.	0.2	44
8	Knockdown of Muscle-Specific Ribosomal Protein L3-Like Enhances Muscle Function in Healthy and Dystrophic Mice. Nucleic Acid Therapeutics, 2021, 31, 457-464.	2.0	11
9	Genetic and epigenetic regulation of skeletal muscle ribosome biogenesis with exercise. Journal of Physiology, 2021, 599, 3363-3384.	1.3	40
10	Reduced mitochondrial DNA and OXPHOS protein content in skeletal muscle of children with cerebral palsy. Developmental Medicine and Child Neurology, 2021, 63, 1204-1212.	1.1	9
11	Targeting cancer via ribosome biogenesis: the cachexia perspective. Cellular and Molecular Life Sciences, 2021, 78, 5775-5787.	2.4	9
12	Myonuclear transcriptional dynamics in response to exercise following satellite cell depletion. IScience, 2021, 24, 102838.	1.9	28
13	Dysbiosis of the gut microbiome impairs mouse skeletal muscle adaptation to exercise. Journal of Physiology, 2021, 599, 4845-4863.	1.3	22
14	Fusion and beyond: Satellite cell contributions to loadingâ€induced skeletal muscle adaptation. FASEB Journal, 2021, 35, e21893.	0.2	51
15	Urine miRNAs as potential biomarkers for systemic reactions induced by exposure to embedded metal. Biomarkers in Medicine, 2021, 15, 1397-1410.	0.6	3
16	Evidence of myomiR regulation of the pentose phosphate pathway during mechanical loadâ€induced hypertrophy. Physiological Reports, 2021, 9, e15137.	0.7	8
17	On the appropriateness of antibody selection to estimate mTORC1 activity. Acta Physiologica, 2020, 228, e13354.	1.8	4
18	Exercise-mediated alteration of hippocampal Dicer mRNA and miRNAs is associated with lower BACE1 gene expression and Aβ1-42 in female 3xTg-AD mice. Journal of Neurophysiology, 2020, 124, 1571-1577.	0.9	5

#	Article	IF	CITATIONS
19	Time-course analysis of the effect of embedded metal on skeletal muscle gene expression. Physiological Genomics, 2020, 52, 575-587.	1.0	10
20	Fusion-Independent Satellite Cell Communication to Muscle Fibers During Load-Induced Hypertrophy. Function, 2020, 1, zqaa009.	1.1	53
21	Making Mice Mighty: recent advances in translational models of load-induced muscle hypertrophy. Journal of Applied Physiology, 2020, 129, 516-521.	1.2	28
22	Satellite Cell Depletion Disrupts Transcriptional Coordination and Muscle Adaptation to Exercise. Function, 2020, 2, zqaa033.	1.1	43
23	High-yield skeletal muscle protein recovery from TRIzol after RNA and DNA extraction. BioTechniques, 2020, 69, 264-269.	0.8	11
24	Muscle memory: myonuclear accretion, maintenance, morphology, and miRNA levels with training and detraining in adult mice. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1705-1722.	2.9	51
25	Epigenetic Marks at the Ribosomal DNA Promoter in Skeletal Muscle Are Negatively Associated With Degree of Impairment in Cerebral Palsy. Frontiers in Pediatrics, 2020, 8, 236.	0.9	4
26	CORP: Using transgenic mice to study skeletal muscle physiology. Journal of Applied Physiology, 2020, 128, 1227-1239.	1.2	8
27	The myonuclear DNA methylome in response to an acute hypertrophic stimulus. Epigenetics, 2020, 15, 1151-1162.	1.3	27
28	Depletion of resident muscle stem cells negatively impacts running volume, physical function, and muscle fiber hypertrophy in response to lifelong physical activity. American Journal of Physiology - Cell Physiology, 2020, 318, C1178-C1188.	2.1	62
29	Resident muscle stem cells are not required for testosterone-induced skeletal muscle hypertrophy. American Journal of Physiology - Cell Physiology, 2019, 317, C719-C724.	2.1	23
30	Targeting Pathogenic Lafora Bodies in Lafora Disease Using an Antibody-Enzyme Fusion. Cell Metabolism, 2019, 30, 689-705.e6.	7.2	66
31	Phosphorylation of eukaryotic initiation factor 4E is dispensable for skeletal muscle hypertrophy. American Journal of Physiology - Cell Physiology, 2019, 317, C1247-C1255.	2.1	9
32	Translational control of muscle mass. Journal of Applied Physiology, 2019, 127, 579-580.	1.2	2
33	"Muscle memory―not mediated by myonuclear number? Secondary analysis of human detraining data. Journal of Applied Physiology, 2019, 127, 1814-1816.	1.2	21
34	Hydrophobic sand is a viable method of urine collection from the rat for extracellular vesicle biomarker analysis. Molecular Genetics and Metabolism Reports, 2019, 21, 100505.	0.4	3
35	Bovine Milk Extracellular Vesicles (EVs) Modification Elicits Skeletal Muscle Growth in Rats. Frontiers in Physiology, 2019, 10, 436.	1.3	24
36	Elevated myonuclear density during skeletal muscle hypertrophy in response to training is reversed during detraining. American Journal of Physiology - Cell Physiology, 2019, 316, C649-C654.	2.1	63

#	Article	IF	CITATIONS
37	A hindbrain inhibitory microcircuit mediates vagally-coordinated glucose regulation. Scientific Reports, 2019, 9, 2722.	1.6	33
38	Life-long reduction in myomiR expression does not adversely affect skeletal muscle morphology. Scientific Reports, 2019, 9, 5483.	1.6	29
39	Muscle Fiber Splitting Is a Physiological Response to Extreme Loading in Animals. Exercise and Sport Sciences Reviews, 2019, 47, 108-115.	1.6	29
40	Anabolic and Catabolic Signaling Pathways That Regulate Skeletal Muscle Mass. , 2019, , 275-290.		5
41	Regulation of Ribosome Biogenesis in Skeletal Muscle Hypertrophy. Physiology, 2019, 34, 30-42.	1.6	98
42	MyoVision: software for automated high-content analysis of skeletal muscle immunohistochemistry. Journal of Applied Physiology, 2018, 124, 40-51.	1.2	161
43	A novel tetracycline-responsive transgenic mouse strain for skeletal muscle-specific gene expression. Skeletal Muscle, 2018, 8, 33.	1.9	31
44	Myonuclear Domain Flexibility Challenges Rigid Assumptions on Satellite Cell Contribution to Skeletal Muscle Fiber Hypertrophy. Frontiers in Physiology, 2018, 9, 635.	1.3	72
45	Starring or Supporting Role? Satellite Cells and Skeletal Muscle Fiber Size Regulation. Physiology, 2018, 33, 26-38.	1.6	107
46	Physiological Differences Between Low Versus High Skeletal Muscle Hypertrophic Responders to Resistance Exercise Training: Current Perspectives and Future Research Directions. Frontiers in Physiology, 2018, 9, 834.	1.3	69
47	MicroRNAs, heart failure, and aging: potential interactions with skeletal muscle. Heart Failure Reviews, 2017, 22, 209-218.	1.7	25
48	The Role of Ribosome Biogenesis in Skeletal Muscle Hypertrophy. , 2017, , 141-153.		3
49	Methodological issues limit interpretation of negative effects of satellite cell depletion on adult muscle hypertrophy. Development (Cambridge), 2017, 144, 1363-1365.	1.2	27
50	Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy. Cell Stem Cell, 2017, 20, 56-69.	5.2	276
51	Reduced skeletal muscle satellite cell number alters muscle morphology after chronic stretch but allows limited serial sarcomere addition. Muscle and Nerve, 2017, 55, 384-392.	1.0	41
52	Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice. Skeletal Muscle, 2017, 7, 14.	1.9	119
53	Synergist Ablation as a Rodent Model to Study Satellite Cell Dynamics in Adult Skeletal Muscle. Methods in Molecular Biology, 2016, 1460, 43-52.	0.4	27
54	Ribosome Biogenesis is Necessary for Skeletal Muscle Hypertrophy. Exercise and Sport Sciences Reviews, 2016, 44, 110-115.	1.6	63

#	Article	IF	CITATIONS
55	Expression of Muscleâ€Specific Ribosomal Protein L3â€Like Impairs Myotube Growth. Journal of Cellular Physiology, 2016, 231, 1894-1902.	2.0	45
56	Myonuclear transcription is responsive to mechanical load and DNA content but uncoupled from cell size during hypertrophy. Molecular Biology of the Cell, 2016, 27, 788-798.	0.9	73
57	Aged Muscle Demonstrates Fiber-Type Adaptations in Response to Mechanical Overload, in the Absence of Myofiber Hypertrophy, Independent of Satellite Cell Abundance. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 461-467.	1.7	41
58	Reduced voluntary running performance is associated with impaired coordination as a result of muscle satellite cell depletion in adult mice. Skeletal Muscle, 2015, 5, 41.	1.9	47
59	The role of microRNAs in skeletal muscle health and disease. Frontiers in Bioscience - Landmark, 2015, 20, 37-77.	3.0	56
60	Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth. Journal of Applied Physiology, 2015, 118, 86-97.	1.2	26
61	Blunted hypertrophic response in aged skeletal muscle is associated with decreased ribosome biogenesis. Journal of Applied Physiology, 2015, 119, 321-327.	1.2	75
62	Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nature Medicine, 2015, 21, 76-80.	15.2	358
63	Differential Effects of Testosterone and Trenbolone on Skeletal Muscle Markers of Ribosome Biogenesis. FASEB Journal, 2015, 29, 825.21.	0.2	0
64	<i>Out FoxO'd by microRNA</i> . Focus on "miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle― American Journal of Physiology - Cell Physiology, 2014, 307, C311-C313.	2.1	4
65	microRNA and skeletal muscle function: novel potential roles in exercise, diseases, and aging. Frontiers in Physiology, 2014, 5, 290.	1.3	16
66	Regulation of the muscle fiber micro environment by activated satellite cells during hypertrophy. FASEB Journal, 2014, 28, 1654-1665.	0.2	225
67	Ribosome Biogenesis: Emerging Evidence for a Central Role in the Regulation of Skeletal Muscle Mass. Journal of Cellular Physiology, 2014, 229, 1584-1594.	2.0	152
68	MicroRNAs in skeletal muscle biology and exercise adaptation. Free Radical Biology and Medicine, 2013, 64, 95-105.	1.3	105
69	Anabolic and Catabolic Signaling Pathways that Regulate Skeletal Muscle Mass. , 2013, , 237-246.		0
70	Time course of gene expression during mouse skeletal muscle hypertrophy. Journal of Applied Physiology, 2013, 115, 1065-1074.	1.2	78
71	Neutral sphingomyelinase 3 modulates myotube density and is regulated by microRNAâ€133. FASEB Journal, 2013, 27, 737.4.	0.2	0
72	Satellite cell depletion does not inhibit adult skeletal muscle regrowth following unloading-induced atrophy. American Journal of Physiology - Cell Physiology, 2012, 303, C854-C861.	2.1	122

#	Article	IF	CITATIONS
73	Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting. Skeletal Muscle, 2012, 2, 8.	1.9	146
74	Skeletal muscle fibroblast collagen expression is negatively regulated by satellite cells. FASEB Journal, 2012, 26, 1078.15.	0.2	0
75	Presence of VDR and CYP27B1 in mouse C2C12 cells and skeletal muscle reveal the action of 25(OH)D3 on suppression of myoblast proliferation. FASEB Journal, 2012, 26, 1143.6.	0.2	0
76	Satellite Cells are not Prerequisite for Skeletal Muscle Regrowth Following Unloadingâ€Induced Atrophy. FASEB Journal, 2012, 26, 1143.11.	0.2	0
77	Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3â€kinase/Akt signalling. Journal of Physiology, 2011, 589, 1831-1846.	1.3	157
78	Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiological Genomics, 2011, 43, 595-603.	1.0	206
79	Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development (Cambridge), 2011, 138, 3657-3666.	1.2	531
80	The MyomiR Network in Skeletal Muscle Plasticity. Exercise and Sport Sciences Reviews, 2011, 39, 150-154.	1.6	145
81	Anabolic and catabolic pathways regulating skeletal muscle mass. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 230-235.	1.3	115
82	Genomic Profiling of Messenger RNAs and MicroRNAs Reveals Potential Mechanisms of TWEAK-Induced Skeletal Muscle Wasting in Mice. PLoS ONE, 2010, 5, e8760.	1.1	73
83	Evidence of MyomiR network regulation of β-myosin heavy chain gene expression during skeletal muscle atrophy. Physiological Genomics, 2009, 39, 219-226.	1.0	184
84	Deletion of Both Transient Receptor Potential Vanilloidâ€1 (TRPV1) and TRPV4 Genes Disrupts Osmoregulatory Thirst and Central Fos Activation. FASEB Journal, 2009, 23, 605.5.	0.2	0
85	MicroRNA-206: The skeletal muscle-specific myomiR. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 682-691.	0.9	366
86	Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1333-E1340.	1.8	208
87	MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. American Journal of Physiology - Cell Physiology, 2007, 293, C451-C457.	2.1	110
88	Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiological Genomics, 2007, 31, 86-95.	1.0	300
89	Purα and Purβ Collaborate with Sp3 To Negatively Regulate β-Myosin Heavy Chain Gene Expression duringSkeletal Muscle Inactivity. Molecular and Cellular Biology, 2007, 27, 1531-1543.	1.1	41
90	MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. Journal of Applied Physiology, 2007, 102, 306-313.	1.2	364

#	Article	IF	CITATIONS
91	Voluntary Wheel Running Ameliorates Vascular Smooth Muscle Hyperâ€contractility in Type 2 Diabetic db/db Mice. FASEB Journal, 2007, 21, A574.	0.2	0
92	Segregated Regulatory Elements Direct β-Myosin Heavy Chain Expression in Response to Altered Muscle Activity. Journal of Biological Chemistry, 1999, 274, 14270-14279.	1.6	32