Delmar S Larsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9346595/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Teaching Cheminformatics through a Collaborative Intercollegiate Online Chemistry Course (OLCC). Journal of Chemical Education, 2021, 98, 416-425.	1.1	12
2	Comparison of the Forward and Reverse Photocycle Dynamics of Two Highly Similar Canonical Red/Green Cyanobacteriochromes Reveals Unexpected Differences. Biochemistry, 2021, 60, 274-288.	1.2	9
3	Not All Photoactive Yellow Proteins Are Built Alike: Surprises and Insights into Chromophore Photoisomerization, Protonation, and Thermal Reisomerization of the Photoactive Yellow Protein Isolated from Salinibacter ruber. Journal of the American Chemical Society, 2021, 143, 19614-19628.	6.6	3
4	Conservation and Diversity in the Primary Reverse Photodynamics of the Canonical Red/Green Cyanobacteriochrome Family. Biochemistry, 2020, 59, 4015-4028.	1.2	1
5	Computational and Spectroscopic Characterization of the Photocycle of an Artificial Rhodopsin. Journal of Physical Chemistry Letters, 2020, 11, 4245-4252.	2.1	7
6	Conservation and diversity in the secondary forward photodynamics of red/green cyanobacteriochromesâ€. Photochemical and Photobiological Sciences, 2019, 18, 2539-2552.	1.6	6
7	Reverse Photodynamics of the Noncanonical Red/Green NpR3784 Cyanobacteriochrome from <i>Nostoc punctiforme</i> . Biochemistry, 2019, 58, 2307-2317.	1.2	6
8	Forward Photodynamics of the Noncanonical Red/Green NpR3784 Cyanobacteriochrome from <i>Nostoc punctiforme</i> . Biochemistry, 2019, 58, 2297-2306.	1.2	6
9	Excitation-Wavelength-Dependent Photocycle Initiation Dynamics Resolve Heterogeneity in the Photoactive Yellow Protein from <i>Halorhodospira halophila</i> . Biochemistry, 2018, 57, 1733-1747.	1.2	7
10	Put Your Backbone into It: Excited-State Structural Relaxation of PffBT4T-2DT Conducting Polymer in Solution. Journal of Physical Chemistry C, 2018, 122, 7020-7026.	1.5	7
11	Noncanonical Photodynamics of the Orange/Green Cyanobacteriochrome Power Sensor NpF2164g7 from the PtxD Phototaxis Regulator of <i>Nostoc punctiforme</i> . Biochemistry, 2018, 57, 2636-2648.	1.2	9
12	Correlating structural and photochemical heterogeneity in cyanobacteriochrome NpR6012g4. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4387-4392.	3.3	65
13	Cluster-Dependent Charge-Transfer Dynamics in Iron–Sulfur Proteins. Biochemistry, 2018, 57, 978-990.	1.2	11
14	Photoreceptors Take Charge: Emerging Principles for Light Sensing. Annual Review of Biophysics, 2018, 47, 291-313.	4.5	65
15	Ultrafast Spintronics: Dynamics of the Photoisomerization-Induced Spin–Charge Excited-State (PISCES) Mechanism in Spirooxazine-Based Photomagnetic Materials. Journal of Physical Chemistry Letters, 2018, 9, 5351-5357.	2.1	4
16	Protonation Heterogeneity Modulates the Ultrafast Photocycle Initiation Dynamics of Phytochrome Cph1. Journal of Physical Chemistry Letters, 2018, 9, 3454-3462.	2.1	24
17	Driving Broad Adaptation of Open On Line Educational Resources. MRS Advances, 2017, 2, 1707-1712.	0.5	4
18	Ultrafast Charge-Transfer Dynamics in the Iron–Sulfur Complex of <i>Rhodobacter capsulatus</i> Ferredoxin VI. Journal of Physical Chemistry Letters, 2017, 8, 4498-4503.	2.1	5

#	Article	IF	CITATIONS
19	Noncanonical Photocycle Initiation Dynamics of the Photoactive Yellow Protein (PYP) Domain of the PYP-Phytochrome-Related (Ppr) Photoreceptor. Journal of Physical Chemistry Letters, 2016, 7, 5212-5218.	2.1	10
20	Optical Dedoping Mechanism for P3HT:F4TCNQ Mixtures. Journal of Physical Chemistry Letters, 2016, 7, 4297-4303.	2.1	37
21	Bifurcation in the Ultrafast Dynamics of the Photoactive Yellow Proteins from <i>Leptospira biflexa</i> and <i>Halorhodospira halophila</i> . Biochemistry, 2016, 55, 6138-6149.	1.2	11
22	Tracking the secondary photodynamics of the green/red cyanobacteriochrome RcaE from Fremyella diplosiphon. Chemical Physics Letters, 2016, 644, 225-230.	1.2	6
23	Conservation and Diversity in the Primary Forward Photodynamics of Red/Green Cyanobacteriochromes. Biochemistry, 2015, 54, 1028-1042.	1.2	32
24	Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E776-85.	3.3	93
25	Evaluating the effectiveness of the open-access ChemWiki resource as a replacement for traditional general chemistry textbooks. Chemistry Education Research and Practice, 2015, 16, 939-948.	1.4	30
26	Dynamic Inhomogeneity in the Photodynamics of Cyanobacterial Phytochrome Cph1. Biochemistry, 2014, 53, 2818-2826.	1.2	65
27	Primary and Secondary Photodynamics of the Violet/Orange Dual-Cysteine NpF2164g3 Cyanobacteriochrome Domain from <i>Nostoc punctiforme</i> . Biochemistry, 2014, 53, 1029-1040.	1.2	24
28	Optically Guided Photoactivity: Coordinating Tautomerization, Photoisomerization, Inhomogeneity, and Reactive Intermediates within the RcaE Cyanobacteriochrome. Journal of Physical Chemistry Letters, 2014, 5, 1527-1533.	2.1	10
29	Heterogeneous Photodynamics of the Pfr State in the Cyanobacterial Phytochrome Cph1. Biochemistry, 2014, 53, 4601-4611.	1.2	36
30	Characterization of Femtosecond Laser-Induced Breakdown Spectroscopy (fsLIBS) and Applications for Biological Samples. Applied Spectroscopy, 2014, 68, 949-954.	1.2	15
31	Toward an Understanding of the Retinal Chromophore in Rhodopsin Mimics. Journal of Physical Chemistry B, 2013, 117, 10053-10070.	1.2	41
32	Unraveling the Primary Isomerization Dynamics in Cyanobacterial Phytochrome Cph1 with Multipulse Manipulations. Journal of Physical Chemistry Letters, 2013, 4, 2605-2609.	2.1	40
33	Primary Photochemistry of the Dark- and Light-Adapted States of the YtvA Protein from <i>Bacillus subtilis</i> . Biochemistry, 2013, 52, 7951-7963.	1.2	26
34	Red States versus Blue States in Colloidal Silicon Nanocrystals: Exciton Sequestration into Low-Density Traps. Journal of Physical Chemistry Letters, 2013, 4, 3806-3812.	2.1	44
35	Photo-isomerization upshifts the pKa of the Photoactive Yellow Protein chromophore to contribute to photocycle propagation. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 270, 43-52.	2.0	14
36	Primary charge carrier dynamics of water-solubilized CdZnS/ZnS core/shell and CdZnS/ZnS·Pd nanoparticle adducts. Chemical Physics Letters, 2013, 573, 56-62.	1.2	14

#	Article	IF	CITATIONS
37	Packing Dependent Electronic Coupling in Single Poly(3-hexylthiophene) H- and J-Aggregate Nanofibers. Journal of Physical Chemistry B, 2013, 117, 4478-4487.	1.2	73
38	Reactive Ground-State Pathways Are Not Ubiquitous in Red/Green Cyanobacteriochromes. Journal of Physical Chemistry B, 2013, 117, 11229-11238.	1.2	31
39	Separating Annihilation and Excitation Energy Transfer Dynamics in Light Harvesting Systems. Journal of Physical Chemistry B, 2013, 117, 11372-11382.	1.2	9
40	Primary Photodynamics of the Green/Red-Absorbing Photoswitching Regulator of the Chromatic Adaptation E Domain from <i>Fremyella diplosiphon</i> . Biochemistry, 2013, 52, 8198-8208.	1.2	34
41	Ultrafast exciton dynamics in colloidal aluminum phosphide nanocrystals. Chemical Physics Letters, 2013, 557, 129-133.	1.2	4
42	Ultrafast E to Z photoisomerization dynamics of the Cph1 phytochrome. Chemical Physics Letters, 2012, 549, 86-92.	1.2	18
43	Substrate and intensity dependent photoenhanced transamination reactions of pyridoxal 5′-phosphate in solution. Chemical Physics Letters, 2012, 554, 195-200.	1.2	1
44	Femtosecond Photodynamics of the Red/Green Cyanobacteriochrome NpR6012g4 from <i>Nostoc punctiforme</i> . 1. Forward Dynamics. Biochemistry, 2012, 51, 608-618.	1.2	81
45	Femtosecond Photodynamics of the Red/Green Cyanobacteriochrome NpR6012g4 from <i>Nostoc punctiforme</i> . 2. Reverse Dynamics. Biochemistry, 2012, 51, 619-630.	1.2	72
46	Note: A flexible light emitting diode-based broadband transient-absorption spectrometer. Review of Scientific Instruments, 2012, 83, 056107.	0.6	8
47	Second-Chance Forward Isomerization Dynamics of the Red/Green Cyanobacteriochrome NpR6012g4 from Nostoc punctiforme. Journal of the American Chemical Society, 2012, 134, 130-133.	6.6	58
48	Chemical Inhomogeneity in the Ultrafast Dynamics of the DXCF Cyanobacteriochrome Tlr0924. Journal of Physical Chemistry B, 2012, 116, 10571-10581.	1.2	31
49	Multiphoton Manipulations of Enzymatic Photoactivity in Aspartate Aminotransferase. Journal of Physical Chemistry B, 2011, 115, 4474-4483.	1.2	7
50	Excited-State Self-Trapping and Ground-State Relaxation Dynamics in Poly(3-hexylthiophene) Resolved with Broadband Pump–Dump–Probe Spectroscopy. Journal of Physical Chemistry Letters, 2011, 2, 2764-2769.	2.1	86
51	Enhancing Undergraduate Chemistry Education with the Online Dynamic ChemWiki Resource. Journal of Chemical Education, 2011, 88, 840-840.	1.1	5
52	Deconstructing the Excited-State Dynamics of β-Carotene in Solution. Journal of Physical Chemistry A, 2011, 115, 3905-3916.	1.1	37
53	Broadband Spectral Probing Revealing Ultrafast Photochemical Branching after Ultraviolet Excitation of the Aqueous Phenolate Anion. Journal of Physical Chemistry A, 2011, 115, 3807-3819.	1.1	54
54	Primary Photodynamics of Water-Solubilized Two-Dimensional CdSe Nanoribbons. Journal of Physical Chemistry C, 2011, 115, 19647-19658.	1.5	8

#	Article	IF	CITATIONS
55	Is the photoactive yellow protein a UV-B/blue light photoreceptor?. Photochemical and Photobiological Sciences, 2011, 10, 464-468.	1.6	15
56	Femtosecond Ligand/Core Dynamics of Microwave-Assisted Synthesized Silicon Quantum Dots in Aqueous Solution. Journal of the American Chemical Society, 2011, 133, 20664-20667.	6.6	88
57	Acceptor dependent polaron recombination dynamics in poly 3-hexyl thiophene: Fullerene composite films. Chemical Physics Letters, 2011, 513, 77-83.	1.2	7
58	Sequestering High-Energy Electrons to Facilitate Photocatalytic Hydrogen Generation in CdSe/CdS Nanocrystals. Journal of Physical Chemistry Letters, 2011, 2, 2688-2694.	2.1	105
59	Using narrowband excitation to confirm that the Sâ^— state in carotenoids is not a vibrationally-excited ground state species. Chemical Physics Letters, 2010, 487, 101-107.	1.2	34
60	Light-Enhanced Catalysis by Pyridoxal Phosphate-Dependent Aspartate Aminotransferase. Journal of the American Chemical Society, 2010, 132, 16953-16961.	6.6	16
61	Subpicosecond Excited-State Proton Transfer Preceding Isomerization During the Photorecovery of Photoactive Yellow Protein. Journal of Physical Chemistry Letters, 2010, 1, 2793-2799.	2.1	26
62	Evolution of Physical and Photocatalytic Properties in the Layered Titanates A ₂ Ti ₄ O ₉ (A = K, H) and in Nanosheets Derived by Chemical Exfoliation. Chemistry of Materials, 2010, 22, 1220-1228.	3.2	160
63	Inter-pigment interactions in the peridinin chlorophyll protein studied by global and target analysis of time resolved absorption spectra. Chemical Physics, 2009, 357, 70-78.	0.9	33
64	K4Nb6O17-derived photocatalysts for hydrogen evolution from water: Nanoscrolls versus nanosheets. Journal of Solid State Chemistry, 2008, 181, 1678-1683.	1.4	98
65	Ultrafast Carrier Dynamics in Exfoliated and Functionalized Calcium Niobate Nanosheets in Water and Methanol. Journal of Physical Chemistry C, 2008, 112, 2394-2403.	1.5	72
66	Rapid Photodynamics of Vitamin B ₆ Coenzyme Pyridoxal 5â€~-Phosphate and Its Schiff Bases in Solution. Journal of Physical Chemistry B, 2008, 112, 5867-5873.	1.2	34
67	Calcium Niobate Semiconductor Nanosheets as Catalysts for Photochemical Hydrogen Evolution from Water. Journal of Physical Chemistry C, 2007, 111, 14589-14592.	1.5	135
68	Synthesis and Characterization of Manganese-Doped Silicon Nanoparticles:  Bifunctional Paramagnetic-Optical Nanomaterial. Journal of the American Chemical Society, 2007, 129, 10668-10669.	6.6	74
69	Use of Ultrafast Dispersed Pumpâ^'Dumpâ^'Probe and Pumpâ^'Repumpâ^'Probe Spectroscopies to Explore the Light-Induced Dynamics of Peridinin in Solution. Journal of Physical Chemistry B, 2006, 110, 512-521.	1.2	91
70	Excited-State Dynamics of Carotenoids in Light-Harvesting Complexes. 2. Dissecting Pulse Structures from Optimal Control Experiments. Journal of Physical Chemistry B, 2006, 110, 5737-5746.	1.2	18
71	Excited-State Dynamics of Carotenoids in Light-Harvesting Complexes. 1. Exploring the Relationship between the S1and S* States. Journal of Physical Chemistry B, 2006, 110, 5727-5736.	1.2	94
72	Initial Photoinduced Dynamics of the Photoactive Yellow Protein. ChemPhysChem, 2005, 6, 828-837.	1.0	55

#	Article	IF	CITATIONS
73	Ultrafast Dynamics of Isolated Model Photoactive Yellow Protein Chromophores: "Chemical Perturbation Theory―in the Laboratory. Journal of Physical Chemistry B, 2005, 109, 4197-4208.	1.2	62
74	Mediation of Ultrafast Light-Harvesting by a Central Dimer in Phycoerythrin 545 Studied by Transient Absorption and Global Analysis. Journal of Physical Chemistry B, 2005, 109, 14219-14226.	1.2	31
75	Uncovering the hidden ground state of green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17988-17993.	3.3	135
76	Stimulated emission three-pulse photo-echo peakshift: A mixed pump–probe and photon-echo technique for studying excited-state dynamics. Journal of Chemical Physics, 2004, 121, 5039-5042.	1.2	4
77	Ultrafast Excited and Ground-State Dynamics of the Green Fluorescent Protein Chromophore in Solution. Journal of Physical Chemistry A, 2004, 108, 4587-4598.	1.1	97
78	Global and target analysis of time-resolved spectra. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1657, 82-104.	0.5	1,354
79	Contrasting the Excited-State Dynamics of the Photoactive Yellow Protein Chromophore: Protein versus Solvent Environments. Biophysical Journal, 2004, 87, 1848-1857.	0.2	72
80	Incoherent Manipulation of the Photoactive Yellow Protein Photocycle with Dispersed Pump-Dump-Probe Spectroscopy. Biophysical Journal, 2004, 87, 1858-1872.	0.2	143
81	Photoisomerization and Photoionization of the Photoactive Yellow Protein Chromophore in Solution. Biophysical Journal, 2004, 86, 2538-2550.	0.2	109
82	Excited state dynamics of β-carotene explored with dispersed multi-pulse transient absorption. Chemical Physics Letters, 2003, 381, 733-742.	1.2	151
83	Initial photo-induced dynamics of the photoactive yellow protein chromophore in solution. Chemical Physics Letters, 2003, 369, 563-569.	1.2	51
84	Initial Steps of Signal Generation in Photoactive Yellow Protein Revealed with Femtosecond Mid-Infrared Spectroscopyâ€. Biochemistry, 2003, 42, 10054-10059.	1.2	123
85	A small volume, rapid translation cryostat insert constructed from commercial components for the detection of ultrafast optical signals. Review of Scientific Instruments, 2002, 73, 1325-1328.	0.6	8
86	Ultrafast Protein Dynamics of Bacteriorhodopsin Probed by Photon Echo and Transient Absorption Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 6067-6080.	1.2	94
87	Influence of intramolecular vibrations in third-order, time-domain resonant spectroscopies. I. Experiments. Journal of Chemical Physics, 2001, 114, 8008-8019.	1.2	83
88	Influence of intramolecular vibrations in third-order, time-domain resonant spectroscopies. II. Numerical calculations. Journal of Chemical Physics, 2001, 114, 8020-8039.	1.2	96
89	Origin of line broadening in the electronic absorption spectra of conjugated polymers: Three-pulse-echo studies of MEH-PPV in toluene. Physical Review B, 2000, 61, 13670-13678.	1.1	81
90	Three pulse photon echo studies of nondipolar solvation: Comparison with a viscoelastic model. Journal of Chemical Physics, 1999, 111, 8970-8979.	1.2	92

#	Article	IF	CITATIONS
91	Measurement of pick-up cross-sections of 4He clusters: Polar versus non-polar molecules. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 1437-1444.	0.6	6
92	Intrinsic optical heterodyne detection of a two-dimensional fifth order Raman response. Chemical Physics Letters, 1997, 272, 48-54.	1.2	58
93	Measurement of pick-up cross-sections of 4He clusters: Polar versus non-polar molecules. , 0, .		1