
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9345927/publications.pdf Version: 2024-02-01

Ριτα Νάνιο

#	Article	IF	CITATIONS
1	No Evidence of Long-Term Disruption of Glycometabolic Control After SARS-CoV-2 Infection. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1009-e1019.	3.6	27
2	Follicular helper T cell signature of replicative exhaustion, apoptosis, and senescence in common variable immunodeficiency. European Journal of Immunology, 2022, 52, 1171-1189.	2.9	9
3	Transcriptional dynamics of induced pluripotent stem cell differentiation into β cells reveals full endodermal commitment and homology with human islets. Cytotherapy, 2021, 23, 311-319.	0.7	9
4	Generation of β Cells from iPSC of a MODY8 Patient with a Novel Mutation in the Carboxyl Ester Lipase (<i>CEL</i>) Gene. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e2322-e2333.	3.6	11
5	Adipocyte-derived extracellular vesicles regulate survival and function of pancreatic \hat{I}^2 cells. JCI Insight, 2021, 6, .	5.0	55
6	Total pancreatectomy sequelae and quality of life: results of islet autotransplantation as a possible mitigation strategy. Updates in Surgery, 2021, 73, 1237-1246.	2.0	9
7	Reduced Follicular Regulatory T Cells in Spleen and Pancreatic Lymph Nodes of Patients With Type 1 Diabetes. Diabetes, 2021, 70, 2892-2902.	0.6	12
8	Treating diabetes with islet transplantation: Lessons from the Milan experience. , 2020, , 645-658.		1
9	Islet autotransplantation: Indication beyond chronic pancreatitis. , 2020, , 127-137.		0
10	Reduced PD-1 expression on circulating follicular and conventional FOXP3+ Treg cells in children with new onset type 1 diabetes and autoantibody-positive at-risk children. Clinical Immunology, 2020, 211, 108319.	3.2	16
11	Heterogeneity of Human Pancreatic Islet Isolation Around Europe: Results of a Survey Study. Transplantation, 2020, 104, 190-196.	1.0	22
12	Islets for Research: Nothing Is Perfect, but We Can Do Better. Diabetes, 2019, 68, 1541-1543.	0.6	5
13	Mechanism and effects of pulsatile GABA secretion from cytosolic pools in the human beta cell. Nature Metabolism, 2019, 1, 1110-1126.	11.9	59
14	Islet Allotransplantation in the Bone Marrow of Patients With Type 1 Diabetes: A Pilot Randomized Trial. Transplantation, 2019, 103, 839-851.	1.0	27
15	The role of Coxâ€2 and prostaglandin E ₂ receptor EP3 in pancreatic βâ€cell death. FASEB Journal, 2019, 33, 4975-4986.	0.5	18
16	Diabetes-free survival after extended distal pancreatectomy and islet auto transplantation for benign or borderline/malignant lesions of the pancreas. American Journal of Transplantation, 2019, 19, 920-928.	4.7	11
17	Islet Cell or Pancreas Transplantation. Endocrinology, 2018, , 1-40.	0.1	1
18	Insulin-mimetic effects of short-term rapamycin in type 1 diabetic patients prior to islet transplantation. Acta Diabetologica, 2018, 55, 715-722.	2.5	7

#	Article	IF	CITATIONS
19	Minimally Invasive Pancreatectomy plus Islet Autotransplantation for Benign Tumors of the Pancreatic Neck and Body. Updates in Surgery Series, 2018, , 187-194.	0.1	Ο
20	Glucocorticoids Reprogram Î ² -Cell Signaling to Preserve Insulin Secretion. Diabetes, 2018, 67, 278-290.	0.6	52
21	Differentiation of Sendai Virus-Reprogrammed iPSC into β Cells, Compared with Human Pancreatic Islets and Immortalized β Cell Line. Cell Transplantation, 2018, 27, 1548-1560.	2.5	22
22	Islet Cell or Pancreas Transplantation. Endocrinology, 2018, , 655-693.	0.1	0
23	Salvage Islet Auto Transplantation After Relaparatomy. Transplantation, 2017, 101, 2492-2500.	1.0	6
24	miR-204 is associated with an endocrine phenotype in human pancreatic islets but does not regulate the insulin mRNA through MAFA. Scientific Reports, 2017, 7, 14051.	3.3	11
25	Establishment, characterization and long-term culture of human endocrine pancreas-derived microvascular endothelial cells. Cytotherapy, 2017, 19, 141-152.	0.7	6
26	Islet Volume and Indexes of \hat{I}^2 -Cell Function in Humans. Cell Transplantation, 2016, 25, 491-501.	2.5	3
27	Autologous Islet Transplantation in Patients Requiring Pancreatectomy: A Broader Spectrum of Indications Beyond Chronic Pancreatitis. American Journal of Transplantation, 2016, 16, 1812-1826.	4.7	46
28	Aberrant Accumulation of the Diabetes Autoantigen GAD65 in Golgi Membranes in Conditions of ER Stress and Autoimmunity. Diabetes, 2016, 65, 2686-2699.	0.6	28
29	The state of the art of islet transplantation and cell therapy in type 1 diabetes. Acta Diabetologica, 2016, 53, 683-691.	2.5	63
30	MR Imaging Monitoring of Iron-Labeled Pancreatic Islets in a Small Series of Patients: Islet Fate in Successful, Unsuccessful, and Autotransplantation. Cell Transplantation, 2015, 24, 2285-2296.	2.5	32
31	Human islet distribution programme for basic research: activity over the last 5Âyears. Diabetologia, 2015, 58, 1138-1140.	6.3	23
32	Isolation, Characterization and Potential Role in Beta Cell-Endothelium Cross-Talk of Extracellular Vesicles Released from Human Pancreatic Islets. PLoS ONE, 2014, 9, e102521.	2.5	83
33	RFamide Peptides 43RFa and 26RFa Both Promote Survival of Pancreatic β-Cells and Human Pancreatic Islets but Exert Opposite Effects on Insulin Secretion. Diabetes, 2014, 63, 2380-2393.	0.6	44
34	Liver Perfusion Changes Occurring During Pancreatic Islet Engraftment: A Dynamic Contrast-Enhanced Magnetic Resonance Study. American Journal of Transplantation, 2014, 14, 203-210.	4.7	10
35	Calcineurin Inhibitor-Free Immunosuppressive Regimen in Type 1 Diabetes Patients Receiving Islet Transplantation. Transplantation, 2014, 98, 1301-1309.	1.0	21
36	Islet Transplantation Stabilizes Hemostatic Abnormalities and Cerebral Metabolism in Individuals With Type 1 Diabetes. Diabetes Care, 2014, 37, 267-276.	8.6	39

#	Article	IF	CITATIONS
37	The allocation of pancreas allografts on donor age and duration of intensive care unit stay: the experience of the North Italy Transplant program. Transplant International, 2014, 27, 353-361.	1.6	5
38	Relaparotomy for a pancreatic fistula after a pancreaticoduodenectomy: a comparison of different surgical strategies. Hpb, 2014, 16, 40-45.	0.3	42
39	Autologous Pancreatic Islet Transplantation in Human Bone Marrow. Diabetes 2013;62:3523-3531. Diabetes, 2014, 63, 377-377.	0.6	0
40	Combined laparoscopic spleen-preserving distal pancreatectomy and islet autotransplantation for benign pancreatic neoplasm. World Journal of Gastroenterology, 2014, 20, 4030.	3.3	13
41	Autologous Pancreatic Islet Transplantation in Human Bone Marrow. Diabetes, 2013, 62, 3523-3531.	0.6	90
42	Rapamycin unbalances the polarization of human macrophages to <scp>M</scp> 1. Immunology, 2013, 140, 179-190.	4.4	147
43	Extending Indications for Islet Autotransplantation in Pancreatic Surgery. Annals of Surgery, 2013, 258, 210-218.	4.2	62
44	Alloantibody and Autoantibody Monitoring Predicts Islet Transplantation Outcome in Human Type 1 Diabetes. Diabetes, 2013, 62, 1656-1664.	0.6	105
45	Human Pancreatic Islet Preparations Release HMGB1: (Ir)Relevance for Graft Engraftment. Cell Transplantation, 2013, 22, 2175-2186.	2.5	19
46	Des-Acyl Ghrelin Fragments and Analogues Promote Survival of Pancreatic β-Cells and Human Pancreatic Islets and Prevent Diabetes in Streptozotocin-Treated Rats. Journal of Medicinal Chemistry, 2012, 55, 2585-2596.	6.4	46
47	CXCR1/2 inhibition enhances pancreatic islet survival after transplantation. Journal of Clinical Investigation, 2012, 122, 3647-3651.	8.2	129
48	Comparative Evaluation of Simple Indices of Graft Function After Islet Transplantation. Transplantation, 2011, 92, 815-821.	1.0	36
49	Expansion of Th17 Cells and Functional Defects in T Regulatory Cells Are Key Features of the Pancreatic Lymph Nodes in Patients With Type 1 Diabetes. Diabetes, 2011, 60, 2903-2913.	0.6	199
50	Human placental lactogen (hPL-A) activates signaling pathways linked to cell survival and improves insulin secretion in human pancreatic islets. Islets, 2011, 3, 250-258.	1.8	29
51	Risks and Benefits of Transplantation in the Cure of Type 1 Diabetes: Whole Pancreas Versus Islet Transplantation. A Single Center Study. Review of Diabetic Studies, 2011, 8, 44-50.	1.3	51
52	Mesenchymal Cells Appearing in Pancreatic Tissue Culture Are Bone Marrow-Derived Stem Cells With the Capacity to Improve Transplanted Islet Function Â. Stem Cells, 2010, 28, 140-151.	3.2	70
53	Role of CCL2/MCP-1 in Islet Transplantation. Cell Transplantation, 2010, 19, 1031-1046.	2.5	69
54	The Pancreatic Lymph-nodes of Type 1 Diabetic Patients Contain Epigenetically-imprinted Natural Regulatory T Cells which Lack Suppressive Function. Clinical Immunology, 2010, 135, S21.	3.2	0

#	Article	IF	CITATIONS
55	Rapamycin does not adversely affect intrahepatic islet engraftment in mice and improves early islet engraftment in humans. Islets, 2009, 1, 42-49.	1.8	14
56	Improving the Procedure for Detection of Intrahepatic Transplanted Islets by Magnetic Resonance Imaging. American Journal of Transplantation, 2009, 9, 2372-2382.	4.7	22
57	Collagenase Isoforms for Pancreas Digestion. Cell Transplantation, 2009, 18, 203-206.	2.5	17
58	\hat{I}^2 -cell transplantation for diabetes therapy. Lancet, The, 2008, 372, 28.	13.7	1
59	Transplant Estimated Function. Diabetes Care, 2008, 31, 301-305.	8.6	36
60	Abscisic Acid Is an Endogenous Stimulator of Insulin Release from Human Pancreatic Islets with Cyclic ADP Ribose as Second Messenger. Journal of Biological Chemistry, 2008, 283, 32188-32197.	3.4	129
61	Obestatin Promotes Survival of Pancreatic β-Cells and Human Islets and Induces Expression of Genes Involved in the Regulation of β-Cell Mass and Function. Diabetes, 2008, 57, 967-979.	0.6	173
62	Disproportionate Hyperproinsulinemia, β-Cell Restricted Prohormone Convertase 2 Deficiency, and Cell Cycle Inhibitors Expression by Human Islets Transplanted into Athymic Nude Mice: Insights into Nonimmune-Mediated Mechanisms of Delayed Islet Graft Failure. Cell Transplantation, 2008, 17, 1323-1336.	2.5	24
63	Prolonged Islet Allograft Survival in Diabetic Mice Upon Macrophage Depletion by Clodronate-Loaded Erythrocytes. Transplantation, 2008, 85, 648-650.	1.0	14
64	Acylated and Unacylated Ghrelin Promote Proliferation and Inhibit Apoptosis of Pancreatic β-Cells and Human Islets: Involvement of 3′,5′-Cyclic Adenosine Monophosphate/Protein Kinase A, Extracellular Signal-Regulated Kinase 1/2, and Phosphatidyl Inositol 3-Kinase/Akt Signaling. Endocrinology, 2007, 148, 512-529.	2.8	272
65	Kidney Function After Islet Transplant Alone in Type 1 Diabetes: Impact of immunosuppressive therapy on progression of diabetic nephropathy. Diabetes Care, 2007, 30, 1150-1155.	8.6	80
66	Characterization of Collagenase Blend Enzymes for Human Islet Transplantation. Transplantation, 2007, 84, 1568-1575.	1.0	34
67	Culture Medium Modulates Proinflammatory Conditions of Human Pancreatic Islets Before Transplantation. American Journal of Transplantation, 2006, 6, 2791-2795.	4.7	46
68	Minimal Focal Steatosis of Liver after Islet Transplantation in Humans: A Long-Term Study. Cell Transplantation, 2005, 14, 727-733.	2.5	42
69	Islet isolation for allotransplantation: variables associated with successful islet yield and graft function. Diabetologia, 2005, 48, 906-912.	6.3	170
70	In vitro modulation of monocyte chemoattractant protein-1 release in human pancreatic islets. Transplantation Proceedings, 2004, 36, 607-608.	0.6	10
71	Identification of in vitro parameters predictive of graft function: a study in an animal model of islet transplantation. Transplantation Proceedings, 2004, 36, 612-613.	0.6	11
72	Donor and Isolation Variables Associated with Human Islet Monocyte Chemoattractant Protein-1 Release. Transplantation, 2004, 78, 1564-1567.	1.0	12

#	Article	IF	CITATIONS
73	Human Pancreatic Islets Produce and Secrete MCP-1/CCL2: Relevance in Human Islet Transplantation. Diabetes, 2002, 51, 55-65.	0.6	270
74	Succesful transplantation of human islets in recipients bearing a kidney graft. Diabetologia, 2002, 45, 77-84.	6.3	49
75	Secretory defects induced by immunosuppressive agents on human pancreatic β-cells. Acta Diabetologica, 2002, 39, 229-233.	2.5	59
76	High Glucose Causes Apoptosis in Cultured Human Pancreatic Islets of Langerhans. Diabetes, 2001, 50, 1290-1301.	0.6	296
77	Mechanisms of coordination of Ca2+ signals in pancreatic islet cells. Diabetes, 1999, 48, 1971-1978.	0.6	58
78	Lessons from in Vitro Perifusion of Pancreatic Islets Isolated from 80 Human Pancreases. Cell Transplantation, 1999, 8, 709-712.	2.5	12
79	CRYOPRESERVATION OF HUMAN ISLETS OF LANGERHANS. Transplantation, 1999, 68, 597-598.	1.0	7
80	EFFECTS OF CRYOPRESERVATION ON IN VITRO AND IN VIVO LONG-TERM FUNCTION OF HUMAN ISLETS1. Transplantation, 1999, 68, 655-662.	1.0	28
81	IHP Entrapment into Human Erythrocytes: Comparison between Hypotonic Dialysis and DMSO Osmotic Pulse. , 1992, 326, 19-26.		5
82	A New Class of Contrast Agents for Magnetic Resonance Imaging Based on Selective Reduction of Water-T2 by Chemical Exchange. Investigative Radiology, 1988, 23, S267-S270.	6.2	20
83	Factors Determining the Proton T1 Relaxivity in Solutions Containing Gd-DTPA. Investigative Radiology, 1988, 23, S264-S266.	6.2	9
84	13C solid state CP/MAS NMR studies of EDTA complexes. Inorganica Chimica Acta, 1987, 129, L23-L25.	2.4	14