SÅ,awomir Kula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9345588/publications.pdf

Version: 2024-02-01

		623734	610901
33	610	14	24 g-index
papers	citations	h-index	g-index
33	33	33	818
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Synthesis, electrochemical, optical and biological properties of new carbazole derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120497.	3.9	4
2	Synthesis, physicochemical characterization and biological properties of new 5-(1H-phenanthro[9,10-d]imidazol-2-yl)-thiophene-2-carbaldehyde. Journal of Molecular Structure, 2022, 1252, 132122.	3.6	5
3	Effect of heterocycle donor in 2-cyanoacrylic acid conjugated derivatives for DSSC applications. Solar Energy, 2021, 220, 1109-1119.	6.1	9
4	Influence of N-donor substituents on physicochemical properties of phenanthro[9,10-d]imidazole derivatives. Journal of Luminescence, 2021, 233, 117910.	3.1	6
5	Synthesis, photophysical properties and electroluminescence characterization of 1 -phenyl- 1 H-phenanthro[9,10-d]imidazole derivatives with N-donor substituents. Dyes and Pigments, $2021, 192, 109437$.	3.7	7
6	9,9′-bifluorenylidene derivatives as novel hole-transporting materials for potential photovoltaic applications. Dyes and Pigments, 2020, 174, 108031.	3.7	6
7	Platinum(II) coordination compound with 4′-[4-(dimethylamino)phenyl]-2,2′:6′,2″-terpyridine – The insight into the luminescence behavior and substituent effect. Polyhedron, 2020, 182, 114502.	new 2.2	4
8	Photoelectrochemical and thermal characterization of aromatic hydrocarbons substituted with a dicyanovinyl unit. Dyes and Pigments, 2020, 180, 108432.	3.7	5
9	Platinum(<scp>ii</scp>) complexes showing high cytotoxicity toward A2780 ovarian carcinoma cells. Dalton Transactions, 2019, 48, 13081-13093.	3.3	19
10	Copper($<$ scp $>$ ii $<$ /scp $>$) complexes with 2,2â \in 2:6â \in 2,2â \in 2-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6-di(pyrazin-2-yl)pyridine substituted with quinolines. Synthesis, structure, antiproliferative activity, and catalytic activity in the oxidation of alkanes and alcohols with peroxides. Dalton Transactions, 2019, 48, 12656-12673.	3.3	44
11	Effect of thienyl units in cyanoacrylic acid derivatives toward dye-sensitized solar cells. Journal of Photochemistry and Photobiology B: Biology, 2019, 197, 111555.	3.8	9
12	The effect of 2-, 3- and 4-pyridyl substituents on photophysics of fac-[ReCl(CO)3(n-pytpy-κ2N)] complexes: Experimental and theoretical insights. Journal of Luminescence, 2019, 209, 346-356.	3.1	8
13	Aryl substituted 2,6-di(thiazol-2-yl)pyridines –excited-state characterization and potential for OLEDs. Dyes and Pigments, 2019, 169, 89-104.	3.7	12
14	Novel phenanthro [9,10-d] imidazole derivatives - effect of thienyl and 3,4-(ethylenedioxy) thienyl substituents. Synthetic Metals, 2019, 251, 40-48.	3.9	5
15	A family of solution processable ligands and their Re(I) complexes towards light emitting applications. Dyes and Pigments, 2019, 163, 86-101.	3.7	22
16	Thermal, spectroscopic, electrochemical, and electroluminescent characterization of malononitrile derivatives with triphenylamine structure. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 210, 136-147.	3.9	9
17	2,2-Dicyanovinyl derivatives – Thermal, photophysical, electrochemical and electroluminescence investigations. Materials Chemistry and Physics, 2018, 209, 249-261.	4.0	9
18	Spectroscopy, electrochemistry and antiproliferative properties of Au(<scp>iii</scp>), Pt(<scp>ii</scp>) and Cu(<scp>ii</scp>) complexes bearing modified 2,2′:6′,2′′-terpyridine ligands. D Transactions, 2018, 47, 6444-6463.	alton	37

#	Article	IF	CITATIONS
19	Malononitrile derivatives as push-pull molecules: Structure - properties relationships characterization. Journal of Luminescence, 2018, 203, 455-466.	3.1	4
20	2,2′:6′,2′′â€Terpyridine Analogues: Structural, Electrochemical, and Photophysical Properties of 2,6â€Di(thiazolâ€2â€yl)pyridine Derivatives. European Journal of Organic Chemistry, 2017, 2017, 2730-2745.	2.4	19
21	Copper(<scp>ii</scp>) complexes of functionalized 2,2′:6′,2′-terpyridines and 2,6-di(thiazol-2-yl)pyrid structure, spectroscopy, cytotoxicity and catalytic activity. Dalton Transactions, 2017, 46, 9591-9604.	line: 3.3	69
22	Synthesis, spectroscopic, electrochemical and computational studies of rhenium(<scp>i</scp>) tricarbonyl complexes based on bidentate-coordinated 2,6-di(thiazol-2-yl)pyridine derivatives. Dalton Transactions, 2017, 46, 9605-9620.	3.3	26
23	Tuning the photophysical properties of 4′-substituted terpyridines – an experimental and theoretical study. Organic and Biomolecular Chemistry, 2016, 14, 3793-3808.	2.8	46
24	The influence of experimental conditions and intermolecular interaction on the band gap determination. Case study of perylene diimide and carbazole-fluorene derivatives Electrochimica Acta, 2016, 216, 449-456.	5.2	7
25	Synthesis, photophysical properties and application in organic light emitting devices of rhenium($\langle scp \rangle i \langle scp \rangle$) carbonyls incorporating functionalized $2,2\hat{a} \in (2,2\hat{a}) \in (2,2\hat$	3.6	29
26	Rhenium(<scp>i</scp>) terpyridine complexes – synthesis, photophysical properties and application in organic light emitting devices. Dalton Transactions, 2016, 45, 1746-1762.	3.3	48
27	Simple donor–π–acceptor derivatives exhibiting aggregation-induced emission characteristics for use as emitting layer in OLED. Dyes and Pigments, 2016, 129, 80-89.	3.7	34
28	Symmetrical N-acylsubstituted dihydrazones containing bithiophene core — Photophysical, electrochemical and thermal characterization. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 159, 169-176.	3.9	5
29	Multifaceted Strategy for the Synthesis of Diverse 2,2'-Bithiophene Derivatives. Molecules, 2015, 20, 4565-4593.	3.8	15
30	New core-substituted with electron-donating group 1,8-naphthalimides towards optoelectronic applications. Journal of Luminescence, 2015, 166, 22-39.	3.1	17
31	Unsymmetrical and symmetrical azines toward application in organic photovoltaic. Optical Materials, 2015, 39, 58-68.	3.6	14
32	(Photo)physical Properties of New Molecular Glasses End-Capped with Thiophene Rings Composed of Diimide and Imine Units. Journal of Physical Chemistry C, 2014, 118, 13070-13086.	3.1	39
33	An ambipolar behavior of novel ethynyl-bridged polythiophenes—A comprehensive study. Synthetic Metals, 2013, 165, 7-16.	3.9	18