Muhammad Usman

List of Publications by Citations

Source: https://exaly.com/author-pdf/9344971/muhammad-usman-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

30 papers 232 16 h-index 29-index 35 ext. papers 24.43 ext. citations 28 avg, IF 4.43 L-index

#	Paper	IF	Citations
30	Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials. <i>Advanced Materials</i> , 2017 , 29, 1605071	24	144
29	Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. <i>Plant, Cell and Environment</i> , 2014 , 37, 439-50	8.4	114
28	Integration of a (-Cu-S-) plane in a metal-organic framework affords high electrical conductivity. Nature Communications, 2019 , 10, 1721	17.4	85
27	Electrically Driven White Light Emission from Intrinsic Metal-Organic Framework. <i>ACS Nano</i> , 2016 , 10, 8366-75	16.7	75
26	Semiconductor Behavior of a Three-Dimensional Strontium-Based Metal-Organic Framework. <i>ACS Applied Materials & Discrete Seminary (Control of Seminary)</i>	9.5	59
25	Intrinsic low dielectric behaviour of a highly thermally stable Sr-based metalorganic framework for interlayer dielectric materials. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 3762-3768	7.1	54
24	Metal Drganic Frameworks: New Interlayer Dielectric Materials. ChemElectroChem, 2015, 2, 786-788	4.3	51
23	Anion-Controlled Dielectric Behavior of Homochiral Tryptophan-Based Metal Drganic Frameworks. <i>Crystal Growth and Design</i> , 2014 , 14, 1572-1579	3.5	46
22	Trapped Photons Induced Ultrahigh External Quantum Efficiency and Photoresponsivity in Hybrid Graphene/Metal-Organic Framework Broadband Wearable Photodetectors. <i>Advanced Functional Materials</i> , 2018 , 28, 1804802	15.6	38
21	Metal-organic frameworks for electronics: emerging second order nonlinear optical and dielectric materials. <i>Science and Technology of Advanced Materials</i> , 2015 , 16, 054204	7.1	35
20	Expanding the dimensions of metalBrganic framework research towards dielectrics. <i>Coordination Chemistry Reviews</i> , 2018 , 360, 77-91	23.2	33
19	Zn(II)-based metalBrganic framework: an exceptionally thermally stable, guest-free low dielectric material. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1508-1513	7.1	29
18	Continuous broadband emission from a metalBrganic framework as a human-friendly white light source. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 4728-4732	7.1	27
17	Zr-MOF/Polyaniline Composite Films with Exceptional Seebeck Coefficient for Thermoelectric Material Applications. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 3400-3406	9.5	25
16	Guest dependent dielectric properties of nickel(II)-based supramolecular networks. <i>CrystEngComm</i> , 2014 , 16, 6309-6315	3.3	23
15	Low Dielectric Behavior of a Robust, Guest-Free Magnesium(II) Drganic Framework: A Potential Application of an Alkaline-Earth Metal Compound. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 1669-1674	2.3	16
14	Highly hydrophobic metal o rganic framework for self-protecting gate dielectrics. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11958-11965	13	11

LIST OF PUBLICATIONS

13	High-Samarium-Based Metal-Organic Framework for Gate Dielectric Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 21872-21878	9.5	10
12	Single-Molecule-Based Electroluminescent Device as Future White Light Source. <i>ACS Applied Materials & Materials &</i>	9.5	7
11	Polar Molecule Confinement Effects on Dielectric Modulations of Sr-Based Metal D rganic Frameworks. <i>ACS Applied Electronic Materials</i> , 2019 , 1, 836-844	4	6
10	Identification of TIMING OF CAB EXPRESSION 1 as a temperature-sensitive negative regulator of tuberization in potato. <i>Journal of Experimental Botany</i> , 2019 , 70, 5703-5714	7	6
9	Thermally stable indium based metalBrganic frameworks with high dielectric permittivity. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 9724-9733	7.1	5
8	Optimization of wheat-straw-extracted cellulose via response surface methodology and mechanical properties of its poly(lactide)-based biocomposites. <i>Polymer Composites</i> , 2020 , 41, 5355-5364	3	4
7	Phosphor-Free Electrically Driven White Light Emission from Nanometer-Thick Barium Drganic Framework Films. ACS Applied Nano Materials, 2021, 4, 2395-2403	5.6	3
6	Exceptional Low Dielectric Behavior of Chemically Robust, Guest-Free Co- and Mn-Based Coordination Polymers. <i>ChemElectroChem</i> , 2019 , 6, 623-626	4.3	3
5	Unusual polymorphs of rac-3-phenylpyrrolidine-2,5-dione with Z ? = 1, 2, and 3. <i>CrystEngComm</i> , 2019 , 21, 6819-6829	3.3	1
4	Thin Film Growth of 3D Sr-based Metal-Organic Framework on Conductive Glass via Electrochemical Deposition <i>ChemistryOpen</i> , 2022 , 11, e202100295	2.3	O
3	Two metal-organic frameworks based on Sr and 1,2,4,5-tetra-kis-(4-carb-oxy-phen-yl)benzene linkers <i>Acta Crystallographica Section E: Crystallographic Communications</i> , 2021 , 77, 1243-1248	0.7	0
2	Metal®rganic Frameworks for Electrocatalysis 2020 , 29-66		
1	Magnetic behaviour of 3D metal b rganic frameworks constructed via 1,2,4,5-benzenetetracarboxylate linker and 4f Ce(III) or 3d Fe(III) metal nodes. <i>Inorganic Chemistry Communication</i> , 2020 , 122, 108261	3.1	