
Andrew C Manning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/934495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Carbon Budget 2016. Earth System Science Data, 2016, 8, 605-649.	9.9	905
2	Global Carbon Budget 2017. Earth System Science Data, 2018, 10, 405-448.	9.9	801
3	Very Strong Atmospheric Methane Growth in the 4ÂYears 2014–2017: Implications for the Paris Agreement. Global Biogeochemical Cycles, 2019, 33, 318-342.	4.9	353
4	Rising atmospheric methane: 2007–2014 growth and isotopic shift. Global Biogeochemical Cycles, 2016, 30, 1356-1370.	4.9	317
5	Climate-induced oceanic oxygen fluxes: Implications for the contemporary carbon budget. Global Biogeochemical Cycles, 2002, 16, 6-1-6-13.	4.9	247
6	Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Global Change Biology, 2010, 16, 1317-1337.	9.5	223
7	Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 95-116.	1.6	219
8	On the long-term stability of reference gases for atmospheric O2/N2 and CO2 measurements. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 3-14.	1.6	89
9	Methods for measuring changes in atmospheric O2concentration and their application in southern hemisphere air. Journal of Geophysical Research, 1998, 103, 3381-3397.	3.3	84
10	Studies of Recent Changes in Atmospheric O2 Content. , 2014, , 385-404.		74
11	In-situ measurements of oxygen, carbon monoxide and greenhouse gases from Ochsenkopf tall tower in Germany. Atmospheric Measurement Techniques, 2009, 2, 573-591.	3.1	72
12	Misrepresentation of the IPCC CO2 emission scenarios. Nature Geoscience, 2010, 3, 376-377.	12.9	66
13	Atmospheric potential oxygen: New observations and their implications for some atmospheric and oceanic models. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	64
14	Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer. Global Biogeochemical Cycles, 1999, 13, 1107-1115.	4.9	61
15	Measurements of greenhouse gases and related tracers at Bialystok tall tower station in Poland. Atmospheric Measurement Techniques, 2010, 3, 407-427.	3.1	60
16	Seasonal, synoptic, and diurnalâ€scale variability of biogeochemical trace gases and O ₂ from a 300â€m tall tower in central Siberia. Global Biogeochemical Cycles, 2008, 22, .	4.9	43
17	A statistical gapâ€filling method to interpolate global monthly surface ocean carbon dioxide data. Journal of Advances in Modeling Earth Systems, 2015, 7, 1554-1575.	3.8	31
18	Investigating bias in the application of curve fitting programs to atmospheric time series. Atmospheric Measurement Techniques, 2015, 8, 1469-1489.	3.1	31

#	Article	IF	CITATIONS
19	Atmospheric Mg2+wet deposition within the continental United States and implications for soil inorganic carbon sequestration. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 50-56.	1.6	30
20	Methodology and calibration for continuous measurements of biogeochemical trace gas and O ₂ concentrations from a 300-m tall tower in central Siberia. Atmospheric Measurement Techniques, 2009, 2, 205-220.	3.1	30
21	A ship-based methodology for high precision atmospheric oxygen measurements and its application in the Southern Ocean region. Tellus, Series B: Chemical and Physical Meteorology, 2022, 59, 643.	1.6	26
22	The atmospheric signature of carbon capture and storage. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2113-2132.	3.4	16
23	Iconic CO ₂ Time Series at Risk. Science, 2012, 337, 1038-1040.	12.6	15
24	Interpreting the seasonal cycles of atmospheric oxygen and carbon dioxide concentrations at American Samoa Observatory. Geophysical Research Letters, 2003, 30, .	4.0	14
25	Quantifying the UK's carbon dioxide flux: an atmospheric inverse modelling approach using a regional measurement network. Atmospheric Chemistry and Physics, 2019, 19, 4345-4365.	4.9	14
26	Greenhouse gases in the Earth system: setting the agenda to 2030. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 1885-1890.	3.4	12
27	Continuous measurements of greenhouse gases and atmospheric oxygen at the Namib Desert Atmospheric Observatory. Atmospheric Measurement Techniques, 2015, 8, 2233-2250.	3.1	12
28	In situ measurements of atmospheric O ₂ and CO ₂ reveal an unexpected O ₂ signal over the tropical Atlantic Ocean. Global Biogeochemical Cycles, 2017, 31, 1289-1305.	4.9	12
29	Novel quantification of regional fossil fuel CO ₂ reductions during COVID-19 lockdowns using atmospheric oxygen measurements. Science Advances, 2022, 8, eabl9250.	10.3	12
30	Nitrification amplifies the decreasing trends of atmospheric oxygen and implies a larger land carbon uptake. Global Biogeochemical Cycles, 2007, 21, n/a-n/a.	4.9	9
31	Inferring ²²² Rn soil fluxes from ambient ²²² Rn activity and eddy covariance measurements of CO ₂ . Atmospheric Measurement Techniques, 2016, 9, 5523-5533.	3.1	8
32	Seasonal snapshots of the isotopic (14C, 13C) composition of tropospheric carbon monoxide at Niwot Ridge, Colorado. Chemosphere, 1999, 1, 185-203.	1.2	4
33	Variability in atmospheric O ₂ and CO ₂ concentrations in the southern Pacific Ocean and their comparison with model estimates. Journal of Geophysical Research, 2008, 113, .	3.3	2
34	Two decades of flask observations of atmospheric <i>l´</i> (O ₂ â^•N _{2 CO₂, and APO at stations Lutjewad (the Netherlands) and Mace Head (Ireland), and 3Åyears from Halley station (Antarctica). Earth System Science Data, 2022, 14,}	9.9	ub>) 2
35	991-1014. CO ₂ morrow: Shedding Light on the Climate Crisis. Leonardo, 2013, 46, 124-132.	0.3	1