Shogo Mori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9344925/publications.pdf

Version: 2024-02-01

		1162889	940416	
17	249	8	16	
papers	citations	h-index	g-index	
19	19	19	315	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Structural basis for backbone N-methylation by an interrupted adenylation domain. Nature Chemical Biology, 2018, 14, 428-430.	3.9	58
2	Mode of action and biosynthesis of the azabicycle-containing natural products azinomycin and ficellomycin. Natural Product Reports, 2011, 28, 693.	5.2	36
3	Unusual substrate and halide versatility of phenolic halogenase PltM. Nature Communications, 2019, 10, 1255.	5 . 8	29
4	Using MbtH‣ike Proteins to Alter the Substrate Profile of a Nonribosomal Peptide Adenylation Enzyme. ChemBioChem, 2018, 19, 2186-2194.	1.3	23
5	Engineering Bifunctional Enzymes Capable of Adenylating and Selectively Methylating the Side Chain or Core of Amino Acids. ACS Synthetic Biology, 2018, 7, 399-404.	1.9	18
6	Deciphering Nature's Intricate Way of <i>N</i> , <i>S</i> -Dimethylating <scp>l</scp> -Cysteine: Sequential Action of Two Bifunctional Adenylation Domains. Biochemistry, 2017, 56, 6087-6097.	1.2	17
7	Macrolactone Nuiapolide, Isolated from a Hawaiian Marine Cyanobacterium, Exhibits Anti-Chemotactic Activity. Marine Drugs, 2015, 13, 6274-6290.	2.2	12
8	Activation and Loading of the Starter Unit during Thiocoraline Biosynthesis. Biochemistry, 2017, 56, 4457-4467.	1.2	10
9	Polyketide Ring Expansion Mediated by a Thioesterase, Chain Elongation and Cyclization Domain, in Azinomycin Biosynthesis: Characterization of AziB and AziG. Biochemistry, 2016, 55, 704-714.	1.2	8
10	Probing the limits of interrupted adenylation domains by engineering a trifunctional enzyme capable of adenylation, $\langle i \rangle N \langle i \rangle$ -, and $\langle i \rangle S \langle i \rangle$ -methylation. Organic and Biomolecular Chemistry, 2019, 17, 1169-1175.	1.5	8
11	Characterization of a Unique Interrupted Adenylation Domain That Can Catalyze Three Reactions. ACS Chemical Biology, 2020, 15, 282-289.	1.6	8
12	Priming of Azabicycle Biosynthesis in the Azinomycin Class of Antitumor Agents. Biochemistry, 2017, 56, 805-808.	1.2	6
13	A thorough analysis and categorization of bacterial interrupted adenylation domains, including previously unidentified families. RSC Chemical Biology, 2020, 1, 233-250.	2.0	5
14	Activation of cryptic metabolite production through gene disruption: Dimethyl furan-2,4-dicarboxylate produced by Streptomyces sahachiroi. Beilstein Journal of Organic Chemistry, 2013, 9, 1768-1773.	1.3	3
15	Unimodular Methylation by Adenylation–Thiolation Domains Containing an Embedded Methyltransferase. Journal of Molecular Biology, 2020, 432, 5802-5808.	2.0	3
16	Lessons learned in engineering interrupted adenylation domains when attempting to create trifunctional enzymes from three independent monofunctional ones. RSC Advances, 2020, 10, 34299-34307.	1.7	2
17	Making figures: are you taking the best approach to maximize visibility?. MedChemComm, 2018, 9, 1399-1403.	3 . 5	O