Anton M Manakhov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9344140/publications.pdf Version: 2024-02-01

ANTON M MANAKHOV

#	Article	IF	CITATIONS
1	Computational Design of Gas Sensors Based on V3S4 Monolayer. Nanomaterials, 2022, 12, 774.	1.9	7
2	Biodegradable Nanohybrid Materials as Candidates for Self-Sanitizing Filters Aimed at Protection from SARS-CoV-2 in Public Areas. Molecules, 2022, 27, 1333.	1.7	11
3	Ag-Contained Superabsorbent Curdlan–Chitosan Foams for Healing Wounds in a Type-2 Diabetic Mice Model. Pharmaceutics, 2022, 14, 724.	2.0	9
4	Plasmaâ€coated PCL scaffolds with immobilized plateletâ€rich plasma enhance the wound healing in diabetics mice. Plasma Processes and Polymers, 2022, 19, .	1.6	8
5	Functionalized Nanomembranes and Plasma Technologies for Produced Water Treatment: A Review. Polymers, 2022, 14, 1785.	2.0	7
6	Adhesion and Proliferation of Mesenchymal Stem Cells on Plasma-Coated Biodegradable Nanofibers. Journal of Composites Science, 2022, 6, 193.	1.4	4
7	Antibacterial activity of therapeutic agent-immobilized nanostructured TiCaPCON films against antibiotic-sensitive and antibiotic-resistant Escherichia coli strains. Surface and Coatings Technology, 2021, 405, 126538.	2.2	5
8	Different concepts for creating antibacterial yet biocompatible surfaces: Adding bactericidal element, grafting therapeutic agent through COOH plasma polymer and their combination. Applied Surface Science, 2021, 556, 149751.	3.1	11
9	Electrospun Biodegradable Nanofibers Coated Homogenously by Cu Magnetron Sputtering Exhibit Fast Ion Release. Computational and Experimental Study. Membranes, 2021, 11, 965.	1.4	11
10	Pristine and Antibiotic-Loaded Nanosheets/Nanoneedles-Based Boron Nitride Films as a Promising Platform to Suppress Bacterial and Fungal Infections. ACS Applied Materials & Interfaces, 2020, 12, 42485-42498.	4.0	30
11	XPS Modeling of Immobilized Recombinant Angiogenin and Apoliprotein A1 on Biodegradable Nanofibers. Nanomaterials, 2020, 10, 879.	1.9	9
12	Well-Blended PCL/PEO Electrospun Nanofibers with Functional Properties Enhanced by Plasma Processing. Polymers, 2020, 12, 1403.	2.0	34
13	Cell type specific adhesion to surfaces functionalised by amine plasma polymers. Scientific Reports, 2020, 10, 9357.	1.6	25
14	TiCaPCON-Supported Pt- and Fe-Based Nanoparticles and Related Antibacterial Activity. ACS Applied Materials & amp; Interfaces, 2019, 11, 28699-28719.	4.0	16
15	Plasma-Coated Polycaprolactone Nanofibers with Covalently Bonded Platelet-Rich Plasma Enhance Adhesion and Growth of Human Fibroblasts. Nanomaterials, 2019, 9, 637.	1.9	47
16	Bioactive TiCaPCON-coated PCL nanofibers as a promising material for bone tissue engineering. Applied Surface Science, 2019, 479, 796-802.	3.1	23
17	Structural evolution of Ag/BN hybrids via a polyol-assisted fabrication process and their catalytic activity in CO oxidation. Catalysis Science and Technology, 2019, 9, 6460-6470.	2.1	7
18	Comparison of Different Approaches to Surface Functionalization of Biodegradable Polycaprolactone Scaffolds. Nanomaterials, 2019, 9, 1769.	1.9	37

ΑΝΤΟΝ Μ ΜΑΝΑΚΗΟΥ

#	Article	IF	CITATIONS
19	Plasma Surface Polymerized and Biomarker Conjugated Boron Nitride Nanoparticles for Cancer-Specific Therapy: Experimental and Theoretical Study. Nanomaterials, 2019, 9, 1658.	1.9	6
20	Microstructure, chemical and biological performance of boron-modified TiCaPCON films. Applied Surface Science, 2019, 465, 486-497.	3.1	7
21	Homogeneity and penetration depth of atmospheric pressure plasma polymerization onto electrospun nanofibrous mats. Applied Surface Science, 2019, 471, 835-841.	3.1	18
22	Hydrogen absorption by Ti-implanted Zr-1Nb alloy. International Journal of Hydrogen Energy, 2018, 43, 2484-2491.	3.8	12
23	BN nanoparticle/Ag hybrids with enhanced catalytic activity: theory and experiments. Catalysis Science and Technology, 2018, 8, 1652-1662.	2.1	23
24	Synergistic and long-lasting antibacterial effect of antibiotic-loaded TiCaPCON-Ag films against pathogenic bacteria and fungi. Materials Science and Engineering C, 2018, 90, 289-299.	3.8	27
25	Grafting of carboxyl groups using CO2/C2H4/Ar pulsed plasma: Theoretical modeling and XPS derivatization. Applied Surface Science, 2018, 435, 1220-1227.	3.1	27
26	Synthetic routes, structure and catalytic activity of Ag/BN nanoparticle hybrids toward CO oxidation reaction. Journal of Catalysis, 2018, 368, 217-227.	3.1	18
27	Stability and Electronic Properties of PtPd Nanoparticles via MD and DFT Calculations. Journal of Physical Chemistry C, 2018, 122, 18070-18076.	1.5	19
28	Antibacterial Performance of TiCaPCON Films Incorporated with Ag, Pt, and Zn: Bactericidal Ions Versus Surface Microgalvanic Interactions. ACS Applied Materials & Interfaces, 2018, 10, 24406-24420.	4.0	18
29	Analysis of epoxy functionalized layers synthesized by plasma polymerization of allyl glycidyl ether. Physical Chemistry Chemical Physics, 2018, 20, 20070-20077.	1.3	13
30	Oxidation Behavior of Zr–1Nb Corroded in Air at 400 °C after Plasma Immersion Titanium Implantation. Metals, 2018, 8, 27.	1.0	11
31	Antibacterial biocompatible PCL nanofibers modified by COOH-anhydride plasma polymers and gentamicin immobilization. Materials and Design, 2018, 153, 60-70.	3.3	54
32	Structural and Surface Compatibility Study of Modified Electrospun Poly(ε-caprolactone) (PCL) Composites for Skin Tissue Engineering. AAPS PharmSciTech, 2017, 18, 72-81.	1.5	152
33	High-Performance Ammonia Gas Sensors Based on Plasma Treated Carbon Nanostructures. IEEE Sensors Journal, 2017, 17, 1964-1970.	2.4	43
34	Determination of NH 2 concentration on 3-aminopropyl tri-ethoxy silane layers and cyclopropylamine plasma polymers by liquid-phase derivatization with 5-iodo 2-furaldehyde. Applied Surface Science, 2017, 414, 390-397.	3.1	16
35	Carboxyl-anhydride and amine plasma coating of PCL nanofibers to improve their bioactivity. Materials and Design, 2017, 132, 257-265.	3.3	45
36	Cyclopropylamine plasma polymers for increased cell adhesion and growth. Plasma Processes and Polymers, 2017, 14, 1600123.	1.6	26

ΑΝΤΟΝ Μ ΜΑΝΑΚΗΟΥ

#	Article	IF	CITATIONS
37	XPS depth profiling of derivatized amine and anhydride plasma polymers: Evidence of limitations of the derivatization approach. Applied Surface Science, 2017, 394, 578-585.	3.1	33
38	Effect of Hydrogen Exposure on Mechanical and Tribological Behavior of CrxN Coatings Deposited at Different Pressures on IN718. Materials, 2017, 10, 563.	1.3	11
39	Immobilization of Platelet-Rich Plasma onto COOH Plasma-Coated PCL Nanofibers Boost Viability and Proliferation of Human Mesenchymal Stem Cells. Polymers, 2017, 9, 736.	2.0	35
40	Carboxyl-rich coatings deposited by atmospheric plasma co-polymerization of maleic anhydride and acetylene. Surface and Coatings Technology, 2016, 295, 37-45.	2.2	37
41	The robust bio-immobilization based on pulsed plasma polymerization of cyclopropylamine and glutaraldehyde coupling chemistry. Applied Surface Science, 2016, 360, 28-36.	3.1	28
42	The adhesion of normal human dermal fibroblasts to the cyclopropylamine plasma polymers studied by holographic microscopy. Surface and Coatings Technology, 2016, 295, 70-77.	2.2	31
43	Development of effective QCM biosensors by cyclopropylamine plasma polymerization and antibody immobilization using cross-linking reactions. Surface and Coatings Technology, 2016, 290, 116-123.	2.2	40
44	Plasma Enhanced CVD of Organosilicon Thin Films on Electrospun Polymer Nanofibers. Plasma Processes and Polymers, 2015, 12, 1231-1243.	1.6	33
45	Cell proliferation on modified DLC thin films prepared by plasma enhanced chemical vapor deposition. Biointerphases, 2015, 10, 029520.	0.6	23
46	Deposition of stable amine coating onto polycaprolactone nanofibers by low pressure cyclopropylamine plasma polymerization. Thin Solid Films, 2015, 581, 7-13.	0.8	36
47	Cyclopropylamine plasma polymers deposited onto quartz crystal microbalance for biosensing application. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2801-2808.	0.8	27
48	Optimization of Cyclopropylamine Plasma Polymerization toward Enhanced Layer Stability in Contact with Water. Plasma Processes and Polymers, 2014, 11, 532-544.	1.6	56
49	A Novel Dry Chemical Path Way for Diene and Dienophile Surface Functionalization toward Thermally Responsive Metal–Polymer Adhesion. ACS Applied Materials & Interfaces, 2013, 5, 8446-8456.	4.0	29
50	Atmospheric Pressure Pulsed Plasma Copolymerisation of Maleic Anhydride and Vinyltrimethoxysilane: Influence of Electrical Parameters on Chemistry, Morphology and Deposition Rate of the Coatings. Plasma Processes and Polymers, 2012, 9, 435-445.	1.6	51
51	Diene functionalisation of atmospheric plasma copolymer thin films. Surface and Coatings Technology, 2011, 205, S466-S469.	2.2	25