jingyun Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9344014/publications.pdf

Version: 2024-02-01

58	2,867	257450	42
papers	citations	h-index	g-index
60	60	60	2917
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Testing Real Quantum Theory in an Optical Quantum Network. Physical Review Letters, 2022, 128, 040402.	7.8	39
2	Device-independent randomness expansion against quantum side information. Nature Physics, 2021, 17, 448-451.	16.7	58
3	Experimental Realization of Device-Independent Quantum Randomness Expansion. Physical Review Letters, 2021, 126, 050503.	7.8	29
4	Photonic implementation of device-independent quantum randomness expansion. , 2021, , .		0
5	Field Demonstration of Distributed Quantum Sensing without Post-Selection. Physical Review X, 2021, $11,\ldots$	8.9	18
6	Topological photonics and beyond: introduction. Photonics Research, 2021, 9, TPB1.	7.0	4
7	Optimizing up-conversion single-photon detectors for quantum key distribution. Optics Express, 2020, 28, 25123.	3.4	13
8	Experimental demonstration of non-bilocality with truly independent sources and strict locality constraints. Nature Photonics, 2019, 13, 687-691.	31.4	40
9	Satellite testing of a gravitationally induced quantum decoherence model. Science, 2019, 366, 132-135.	12.6	40
10	Error-Disturbance Trade-off in Sequential Quantum Measurements. Physical Review Letters, 2019, 122, 090404.	7.8	17
11	Experimental measurement-dependent local Bell test with human free will. Physical Review A, 2019, 99, .	2.5	2
12	Test of Local Realism into the Past without Detection and Locality Loopholes. , 2019, , .		1
13	High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole. Physical Review Letters, 2018, 120, 010503.	7.8	85
14	Device-independent quantum random-number generation. Nature, 2018, 562, 548-551.	27.8	154
15	Test of Local Realism into the Past without Detection and Locality Loopholes. Physical Review Letters, 2018, 121, 080404.	7.8	58
16	High speed device-independent quantum random number generation without detection loophole. , 2018, , .		2
17	Random Number Generation with Cosmic Photons. Physical Review Letters, 2017, 118, 140402.	7.8	18
18	Entanglement swapping over 100  km optical fiber with independent entangled photon-pair sources. Optica, 2017, 4, 1214.	9.3	39

#	Article	IF	CITATIONS
19	Experimental quantum data locking. Physical Review A, 2016, 94, .	2.5	16
20	Measurement of topological invariants in a 2D photonic system. Nature Photonics, 2016, 10, 180-183.	31.4	137
21	Symmetry breaking in membrane optomechanics. , 2016, , .		0
22	Experimental Bounds on Classical Random Field Theories. Foundations of Physics, 2015, 45, 726-734.	1.3	2
23	Photon number resolution enables quantum receiver for realistic coherent optical communications. Nature Photonics, 2015, 9, 48-53.	31.4	99
24	Photon number squeezing in repeated parametric downconversion with ancillary photon-number measurements. Optics Express, 2014, 22, 20358.	3.4	1
25	Direct measurement of sub-wavelength interference using thermal light and photon-number-resolved detection. Applied Physics Letters, 2014, 105, 101104.	3.3	12
26	Imaging topological edge states in silicon photonics. Nature Photonics, 2013, 7, 1001-1005.	31.4	1,264
27	Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination. Nature Photonics, 2013, 7, 147-152.	31.4	124
28	Demonstrating highly symmetric single-mode, single-photon heralding efficiency in spontaneous parametric downconversion. Optics Letters, 2013, 38, 1609.	3.3	41
29	Photon-number-resolved detection of photon-subtracted thermal light. Optics Letters, 2013, 38, 2171.	3.3	30
30	Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator micro-resonator. Optics Express, 2011, 19, 1470.	3.4	53
31	Polarization-entangled photon pairs from a periodically poled crystalline waveguide. Optics Express, 2011, 19, 6724.	3.4	17
32	Chip-scale source of photonic entanglement. , 2011, , .		0
33	Single-photon technologies. Journal of Modern Optics, 2011, 58, 169-173.	1.3	2
34	Generating a Frequency-Bin Entangled Comb of Photon Pairs via Four-Wave Mixing in a Silicon-on-Insulator Microring Resonator*. , 2011, , .		1
35	Efficient photon pair sources based on silicon-on-insulator microresonators. , 2010, , .		0
36	Towards improved end-to-end system efficiency of photon pair systems. , 2010, , .		0

#	Article	IF	CITATIONS
37	Enhancing contrast of point images using coherent states and photon-number-resolving detectors. Proceedings of SPIE, 2010, , .	0.8	O
38	Tailored State Preparation for Solid-State Quantum Memory. , 2010, , .		0
39	Heralded, pure-state single-photon source based on a Potassium Titanyl Phosphate waveguide. Optics Express, 2010, 18, 3708.	3.4	27
40	Enhancing image contrast using coherent states and photon number resolving detectors. Optics Express, 2010, 18, 6033.	3.4	11
41	Heralded, Pure-State Single-Photon Source Based on a KTP Waveguide. , 2010, , .		O
42	Resolution and sensitivity of a Fabry-Perot interferometer with a photon-number-resolving detector. Physical Review A, 2009, 80, .	2.5	39
43	Microstructure-Fiber-Based Source of Photonic Entanglement. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1724-1732.	2.9	8
44	A versatile waveguide source of photon pairs for chip-scale quantum information processing. Optics Express, 2009, 17, 6727.	3.4	60
45	Mode expansion and Bragg filtering for a high-fidelity fiber-based photon-pair Source. Optics Express, 2009, 17, 21302.	3.4	26
46	Waveguide source of correlated photon-pairs for chip-scale quantum information processing. , 2009, , .		0
47	Spectral Hole-Burning for Solid-State Quantum Memory. , 2009, , .		0
48	Interferometry with a Photon-Number Resolving Detector. , 2009, , .		0
49	A Versatile, Single-Waveguide, Photon-Pair Source for Chip-Scale Quantum Communication. , 2009, , .		0
50	Generation of high-flux hyperentangled photon pairs using a microstructure-fiber Sagnac interferometer. Physical Review A, 2008, 77, .	2.5	15
51	Experimental implementation of quantum entanglement and hyperentanglement with a fiber-based two-photon source. Proceedings of SPIE, 2008, , .	0.8	0
52	Optimizing the storage and retrieval efficiency of a solid-state quantum memory through tailored state preparation. Proceedings of SPIE, 2007, , .	0.8	2
53	A broadband high spectral brightness fiber-based two-photon source. Optics Express, 2007, 15, 2915.	3.4	64
54	Quantum state tomography of a fiber-based source of polarization-entangled photon pairs. Optics Express, 2007, 15, 18339.	3.4	17

#	Article	IF	CITATION
55	Phase-sensitive four-wave mixing and Raman suppression in a microstructure fiber with dual laser pumps. Optics Letters, 2006, 31, 2771.	3.3	14
56	Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses. Optics Express, 2005, 13, 5777.	3.4	38
57	Efficient generation of correlated photon pairs in a microstructure fiber. Optics Letters, 2005, 30, 3368.	3.3	100
58	Hydrodynamic time scales for intense laser-heated clusters. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 118.	2.1	25