Mingdeng Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9343969/publications.pdf

Version: 2024-02-01

169 8,508 51 84
papers citations h-index g-index

175 175 175 8890 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. Journal of Materials Chemistry A, 2014, 2, 16640-16644.	10.3	505
2	Zn-doped Ni-MOF material with a high supercapacitive performance. Journal of Materials Chemistry A, 2014, 2, 19005-19010.	10.3	395
3	Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nature Communications, 2020, 11, 310.	12.8	313
4	Layered Structural Coâ€Based MOF with Conductive Network Frames as a New Supercapacitor Electrode. Chemistry - A European Journal, 2017, 23, 631-636.	3.3	257
5	Rational Design and General Synthesis of Sâ€Doped Hard Carbon with Tunable Doping Sites toward Excellent Naâ€Ion Storage Performance. Advanced Materials, 2018, 30, e1802035.	21.0	239
6	Valence Engineering via Selective Atomic Substitution on Tetrahedral Sites in Spinel Oxide for Highly Enhanced Oxygen Evolution Catalysis. Journal of the American Chemical Society, 2019, 141, 8136-8145.	13.7	220
7	Layered H ₂ Ti ₆ O ₁₃ â€Nanowires: A New Promising Pseudocapacitive Material in Nonâ€Aqueous Electrolyte. Advanced Functional Materials, 2012, 22, 5185-5193.	14.9	213
8	Metal–organic frameworks: promising materials for improving the open circuit voltage of dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 17259.	6.7	176
9	Additive-free synthesis of unique TiO ₂ mesocrystals with enhanced lithium-ion intercalation properties. Energy and Environmental Science, 2012, 5, 5408-5413.	30.8	145
10	Rational design of few-layer MoSe ₂ confined within ZnSe–C hollow porous spheres for high-performance lithium-ion and sodium-ion batteries. Nanoscale, 2019, 11, 6766-6775.	5.6	143
11	MoO ₂ -Ordered Mesoporous Carbon Nanocomposite as an Anode Material for Lithium-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2182-2187.	8.0	138
12	Hierarchical cerium oxide derived from metal-organic frameworks for high performance supercapacitor electrodes. Electrochimica Acta, 2016, 222, 773-780.	5. 2	120
13	Complex spinel titanate nanowires for a high rate lithium-ion battery. Energy and Environmental Science, 2011, 4, 1886.	30.8	115
14	Ordered mesoporous TiO2–C nanocomposite as an anode material for long-term performance lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4293.	10.3	111
15	Metal–organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic properties. Chemical Communications, 2018, 54, 1253-1256.	4.1	106
16	Self-assembled nanoporous rutile TiO2 mesocrystals with tunable morphologies for high rate lithium-ion batteries. Nano Energy, 2012, 1, 466-471.	16.0	97
17	Hierarchical spheres constructed by ultrathin VS ₂ nanosheets for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 3691-3696.	10.3	94
18	A new promising Ni-MOF superstructure for high-performance supercapacitors. Chemical Communications, 2020, 56, 1803-1806.	4.1	93

#	Article	IF	CITATIONS
19	Hierarchical MoS2@RGO nanosheets for high performance sodium storage. Journal of Power Sources, 2016, 331, 50-57.	7.8	92
20	Highâ€Rate, Large Capacity, and Long Life Dendriteâ€Free Zn Metal Anode Enabled by Trifunctional Electrolyte Additive with a Wide Temperature Range. Advanced Science, 2022, 9, .	11.2	91
21	In situ simultaneous encapsulation of defective MoS2 nanolayers and sulfur nanodots into SPAN fibers for high rate sodium-ion batteries. Chemical Engineering Journal, 2021, 404, 126430.	12.7	90
22	Co-construction of sulfur vacancies and carbon confinement in V ₅ S ₈ /CNFs to induce an ultra-stable performance for half/full sodium-ion and potassium-ion batteries. Nanoscale, 2021, 13, 5033-5044.	5.6	90
23	Composites of V2O3–ordered mesoporous carbon as anode materials for lithium-ion batteries. Carbon, 2013, 62, 382-388.	10.3	89
24	V3Se4 embedded within N/P co-doped carbon fibers for sodium/potassium ion batteries. Chemical Engineering Journal, 2021, 419, 129607.	12.7	89
25	Ge/GeO ₂ -Ordered Mesoporous Carbon Nanocomposite for Rechargeable Lithium-Ion Batteries with a Long-Term Cycling Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 232-239.	8.0	88
26	Graphene quantum dots decorated TiO2 mesoporous film as an efficient electron transport layer for high-performance perovskite solar cells. Journal of Power Sources, 2018, 402, 320-326.	7.8	86
27	Structural engineering of tin sulfides anchored on nitrogen/phosphorus dual-doped carbon nanofibres in sodium/potassium-ion batteries. Carbon, 2022, 189, 46-56.	10.3	86
28	A CMK-5-encapsulated MoSe ₂ composite for rechargeable lithium-ion batteries with improved electrochemical performance. Journal of Materials Chemistry A, 2017, 5, 19632-19638.	10.3	85
29	Layered titanate nanostructures and their derivatives as negative electrode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4403.	10.3	84
30	In situ synthesis of GeO ₂ /reduced graphene oxide composite on Ni foam substrate as a binder-free anode for high-capacity lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 1619-1623.	10.3	83
31	Facile synthesis of rutile TiO ₂ mesocrystals with enhanced sodium storage properties. Journal of Materials Chemistry A, 2015, 3, 17412-17416.	10.3	80
32	Co ₉ S ₈ embedded into N/S doped carbon composites: ⟨i>in situ derivation from a sulfonate-based metalâ€"organic framework and its electrochemical properties. Journal of Materials Chemistry A, 2019, 7, 10331-10337.	10.3	75
33	Hierarchically porous TiO ₂ microspheres as a high performance anode for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 1102-1106.	10.3	72
34	Preparation of a Si/SiO ₂ –Orderedâ€Mesoporousâ€Carbon Nanocomposite as an Anode for Highâ€Performance Lithiumâ€Ion and Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 4841-4848.	3.3	70
35	An Sn doped 1T–2H MoS ₂ few-layer structure embedded in N/P co-doped bio-carbon for high performance sodium-ion batteries. Chemical Communications, 2019, 55, 3614-3617.	4.1	69
36	Metal–Organic Framework Derived Hierarchical Porous Anatase TiO ₂ as a Photoanode for Dye-Sensitized Solar Cell. Crystal Growth and Design, 2016, 16, 121-125.	3.0	68

#	Article	IF	Citations
37	ZnV2O4–CMK nanocomposite as an anode material for rechargeable lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 14284.	6.7	67
38	Sensitive electrochemical microbial biosensor for p-nitrophenylorganophosphates based on electrode modified with cell surface-displayed organophosphorus hydrolase and ordered mesopore carbons. Biosensors and Bioelectronics, 2014, 60, 137-142.	10.1	67
39	In situ fabrication of ultrathin few-layered WSe2 anchored on N, P dual-doped carbon by bioreactor for half/full sodium/potassium-ion batteries with ultralong cycling lifespan. Journal of Colloid and Interface Science, 2020, 574, 217-228.	9.4	67
40	Iso-Oriented Anatase TiO2 Mesocages as a High Performance Anode Material for Sodium-Ion Storage. Scientific Reports, 2015, 5, 11960.	3.3	66
41	Synthesis of Mesoporous Co ²⁺ -Doped TiO ₂ Nanodisks Derived from Metal Organic Frameworks with Improved Sodium Storage Performance. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32071-32079.	8.0	64
42	Hierarchical Composite of Roseâ€Like VS ₂ @S/Nâ€Doped Carbon with Expanded (001) Planes for Superior Liâ€lon Storage. Small, 2019, 15, e1903904.	10.0	64
43	Green synthesis of a Se/HPCF–rGO composite for Li–Se batteries with excellent long-term cycling performance. Journal of Materials Chemistry A, 2017, 5, 22997-23005.	10.3	61
44	Facile Synthesis of Ultraâ€Small Fewâ€Layer Nanostructured MoSe ₂ Embedded on N, P Coâ€Doped Bioâ€Carbon for Highâ€Performance Half/Full Sodiumâ€Ion and Potassiumâ€Ion Batteries. Chemistry A European Journal, 2019, 25, 13411-13421.	y -3. 3	61
45	Hierarchical TiO _{2â^'x} imbedded with graphene quantum dots for high-performance lithium storage. Chemical Communications, 2018, 54, 1413-1416.	4.1	60
46	Hierarchical Cobaltâ€Based Metal–Organic Framework for Highâ€Performance Lithiumâ€lon Batteries. Chemistry - A European Journal, 2018, 24, 13362-13367.	3.3	60
47	A one-step synthesis of porous V ₂ O ₃ @C hollow spheres as a high-performance anode for lithium-ion batteries. Chemical Communications, 2018, 54, 7346-7349.	4.1	59
48	Metal–Organic Frameworks at Interfaces in Dyeâ€Sensitized Solar Cells. ChemSusChem, 2014, 7, 2469-2472.	6.8	57
49	Metal–organic frameworks: Promising materials for enhancing electrochemical properties of nanostructured Zn2SnO4 anode in Li-ion batteries. CrystEngComm, 2012, 14, 2112.	2.6	56
50	Facile synthesis of V6O13 micro-flowers for Li-ion and Na-ion battery cathodes with good cycling performance. Journal of Colloid and Interface Science, 2014, 425, 1-4.	9.4	55
51	An in situ formed Se/CMK-3 composite for rechargeable lithium-ion batteries with long-term cycling performance. Journal of Materials Chemistry A, 2016, 4, 13646-13651.	10.3	54
52	Rational Design of Hierarchical SnS ₂ Microspheres with S Vacancy for Enhanced Sodium Storage Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 9519-9525.	6.7	52
53	Hollow SiO2 microspheres coated with nitrogen doped carbon layer as an anode for high performance lithium-ion batteries. Electrochimica Acta, 2019, 306, 106-112.	5.2	51
54	Electrospun VSe _{1.5} /CNF composite with excellent performance for alkali metal ion batteries. Nanoscale, 2019, 11, 16308-16316.	5 . 6	50

#	Article	IF	CITATIONS
55	Synthesis of hierarchical ZnV ₂ O ₄ microspheres and its electrochemical properties. CrystEngComm, 2014, 16, 10309-10313.	2.6	48
56	Carbon coated anatase TiO 2 mesocrystals enabling ultrastable and robust sodium storage. Journal of Power Sources, 2017, 359, 64-70.	7.8	47
57	In Situ Synthesis of WSe ₂ /CMK-5 Nanocomposite for Rechargeable Lithium-Ion Batteries with a Long-Term Cycling Stability. ACS Sustainable Chemistry and Engineering, 2018, 6, 4688-4694.	6.7	47
58	SPINEL < font>Li < sub>2 < / sub>MTi < sub>3 < / sub>O < sub>8 < / sub> < / font> (< font>M = Mg,) Tj ETQq0 0 0 rgBT / Ove STORAGE. Functional Materials Letters, 2011, 04, 65-69.	rlock 10 T 1.2	f 50 627 Td 46
59	Rutile TiO2 Mesocrystals/Reduced Graphene Oxide with High-Rate and Long-Term Performance for Lithium-Ion Batteries. Scientific Reports, 2015, 5, 8498.	3.3	46
60	Sulfur-Doped Anatase TiO ₂ as an Anode for High-Performance Sodium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 3791-3797.	5.1	46
61	An ultra-small few-layer MoS2-hierarchical porous carbon fiber composite obtained via nanocasting synthesis for sodium-ion battery anodes with excellent long-term cycling performance. Dalton Transactions, 2019, 48, 4149-4156.	3.3	44
62	Ultrasensitive electrochemical sensor for p-nitrophenyl organophosphates based on ordered mesoporous carbons at low potential without deoxygenization. Analytica Chimica Acta, 2014, 822, 23-29.	5.4	41
63	MoS2 hollow spheres in ether-based electrolyte for high performance sodium ion battery. Journal of Colloid and Interface Science, 2019, 548, 20-24.	9.4	40
64	Nbâ€Doped Rutile TiO ₂ Mesocrystals with Enhanced Lithium Storage Properties for Lithium Ion Battery. Chemistry - A European Journal, 2017, 23, 5059-5065.	3.3	39
65	Two-dimensional MoN@N-doped carbon hollow spheres as an anode material for high performance lithium-ion battery. Electrochimica Acta, 2019, 295, 246-252.	5 . 2	39
66	Facile fabrication of a vanadium nitride/carbon fiber composite for half/full sodium-ion and potassium-ion batteries with long-term cycling performance. Nanoscale, 2020, 12, 10693-10702.	5.6	39
67	Metal platinum-wrapped mesoporous carbon for sensitive electrochemical immunosensing based on cyclodextrin functionalized graphene nanosheets. Electrochimica Acta, 2012, 68, 158-165.	5.2	37
68	Ultrathin TiO2-B nanowires with enhanced electrochemical performance for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 10038-10044.	10.3	37
69	TiO ₂ -B nanowires <i>via</i> topological conversion with enhanced lithium-ion intercalation properties. Journal of Materials Chemistry A, 2019, 7, 3842-3847.	10.3	37
70	High-Performance Lithium-Ion-Based Dual-Ion Batteries Enabled by Few-Layer MoSe ₂ /Nitrogen-Doped Carbon. ACS Sustainable Chemistry and Engineering, 2020, 8, 5514-5523.	6.7	37
71	Rutile TiO ₂ Mesocrystals as Sulfur Host for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - A European Journal, 2017, 23, 16312-16318.	3.3	36
72	Stabilizing intermediate phases <i>via</i> the efficient confinement effects of the SnS ₂ -SPAN fibre composite for ultra-stable half/full sodium/potassium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 11449-11457.	10.3	36

#	Article	IF	CITATIONS
73	Facile synthesis of hierarchical MnO2 sub-microspheres composed of nanosheets and their application for supercapacitors. RSC Advances, 2014, 4, 40753-40757.	3.6	35
74	A multi-functional gum arabic binder for NiFe ₂ O ₄ nanotube anodes enabling excellent Li/Na-ion storage performance. Journal of Materials Chemistry A, 2017, 5, 18138-18147.	10.3	35
75	Metal–organic framework-derived hollow structure CoS ₂ /nitrogen-doped carbon spheres for high-performance lithium/sodium ion batteries. Chemical Communications, 2020, 56, 3951-3954.	4.1	35
76	Hierarchically porous anatase TiO ₂ microspheres composed of tiny octahedra with enhanced electrochemical properties in lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 20133-20138.	10.3	34
77	Facile synthesis of ammonium vanadium oxide nanorods for Na-ion battery cathodes. Journal of Colloid and Interface Science, 2014, 428, 73-77.	9.4	34
78	Rapid and facile synthesis of hierarchically mesoporous TiO ₂ â€"B with enhanced reversible capacity and rate capability. Journal of Materials Chemistry A, 2018, 6, 1196-1200.	10.3	34
79	Highly Efficient Perovskite Solar Cells Based on a Zn ₂ SnO ₄ Compact Layer. ACS Applied Materials & Distribution (1988) ACS Applied Ma	8.0	34
80	Reversible conversion reaction of GeO ₂ boosts lithium-ion storage <i>via</i> Fe doping. Journal of Materials Chemistry A, 2019, 7, 4574-4580.	10.3	34
81	Efficient Dye-Sensitized Solar Cells Composed of Nanostructural ZnO Doped with Ti. Catalysts, 2019, 9, 273.	3.5	34
82	Ethanol thermal reduction synthesis of hierarchical MoO ₂ â€"C hollow spheres with high rate performance for lithium ion batteries. RSC Advances, 2016, 6, 105558-105564.	3.6	33
83	Brookite TiO ₂ mesocrystals with enhanced lithium-ion intercalation properties. Chemical Communications, 2018, 54, 11491-11494.	4.1	33
84	Facile Deposition of Nb ₂ O ₅ Thin Film as an Electron-Transporting Layer for Highly Efficient Perovskite Solar Cells. ACS Applied Nano Materials, 2018, 1, 4101-4109.	5.0	33
85	TiO2-B as an electron transporting material for highly efficient perovskite solar cells. Journal of Power Sources, 2019, 415, 8-14.	7.8	33
86	Facile synthesis of hierarchical lychee-like Zn3V3O8@C/rGO nanospheres as high-performance anodes for lithium ion batteries. Journal of Colloid and Interface Science, 2019, 533, 627-635.	9.4	33
87	N-Doped carbon encapsulating Bi nanoparticles derived from metal–organic frameworks for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 22048-22055.	10.3	33
88	Nitrogen-doped carbon encapsulated zinc vanadate polyhedron engineered from a metal–organic framework as a stable anode for alkali ion batteries. Journal of Colloid and Interface Science, 2021, 593, 251-265.	9.4	33
89	Synthesis and characterization of nanosheet-shaped titanium dioxide. Journal of Materials Science, 2007, 42, 529-533.	3.7	31
90	Template-free synthesis of metallic WS2 hollow microspheres as an anode for the sodium-ion battery. Journal of Colloid and Interface Science, 2019, 557, 722-728.	9.4	31

#	Article	IF	Citations
91	Enhanced Performance of Sn-Based Perovskite Solar Cells by Two-Dimensional Perovskite Doping. ACS Sustainable Chemistry and Engineering, 2020, 8, 8624-8628.	6.7	31
92	One-step hydrothermal synthesis of Nb doped brookite TiO ₂ nanosheets with enhanced lithium-ion intercalation properties. Journal of Materials Chemistry A, 2015, 3, 18882-18888.	10.3	30
93	Nanocomposite of Mo ₂ N Quantum Dots@MoO ₃ @Nitrogen-Doped Carbon as a High-Performance Anode for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 10198-10206.	6.7	30
94	Dual carbon decorated germanium-carbon composite as a stable anode for sodium/potassium-ion batteries. Journal of Colloid and Interface Science, 2021, 584, 372-381.	9.4	30
95	Facile preparation of a V ₂ O ₃ /carbon fiber composite and its application for long-term performance lithium-ion batteries. New Journal of Chemistry, 2017, 41, 5380-5386.	2.8	29
96	Hierarchical TiO2-B composed of nanosheets with exposed {010} facets as a high-performance anode for lithium ion batteries. Journal of Power Sources, 2018, 392, 226-231.	7.8	29
97	ULTRATHIN Li ₄ Ti ₅ O ₁₂ NANOSHEETS AS A HIGH PERFORMANCE ANODE FOR Li -ION BATTERY. Functional Materials Letters, 2011, 04, 389-393.	1.2	28
98	Efficiency enhanced dye-sensitized Zn ₂ SnO ₄ solar cells using a facile chemical-bath deposition method. New Journal of Chemistry, 2014, 38, 4465.	2.8	28
99	Template-free fabrication of 1D core-shell MoO2@MoS2/nitrogen-doped carbon nanorods for enhanced lithium/sodium-ion storage. Journal of Colloid and Interface Science, 2021, 588, 804-812.	9.4	28
100	D–A–π–A organic sensitizer surface passivation for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 25086-25093.	10.3	28
101	An inorganic stable Sn-based perovskite film with regulated nucleation for solar cell application. Journal of Materials Chemistry C, 2020, 8, 8840-8845.	5.5	27
102	Preparation of Ge/N, S co-doped ordered mesoporous carbon composite and its long-term cycling performance of lithium-ion batteries. Electrochimica Acta, 2019, 318, 737-745.	5.2	26
103	In situ synthesis of Mn3O4 on Ni foam/graphene substrate as a newly self-supported electrode for high supercapacitive performance. Journal of Colloid and Interface Science, 2019, 534, 665-671.	9.4	26
104	Fabrication of Zn2SnO4 microspheres with controllable shell numbers for highly efficient dye-sensitized solar cells. Solar Energy, 2019, 181, 424-429.	6.1	25
105	General Synthesis of Sulfonateâ€Based Metal–Organic Framework Derived Composite of M _{<i>x</i>} S _{<i>y</i>} @N/Sâ€Doped Carbon for Highâ€Performance Lithium/Sodium lon Batteries. Chemistry - A European Journal, 2021, 27, 2104-2111.	3.3	23
106	Facile synthesis of Li ₂ MnO ₃ nanowires for lithium-ion battery cathodes. New Journal of Chemistry, 2014, 38, 584-587.	2.8	22
107	Nanocomposite of ultra-small MoO2 embedded in nitrogen-doped carbon: In situ derivation from an organic molybdenum complex and its superior Li-lon storage performance. Journal of Colloid and Interface Science, 2021, 592, 33-41.	9.4	22
108	Synthesis of TiO2 nanoparticles with tunable dominant exposed facets (010), (001) and (106). CrystEngComm, 2013, 15, 3040.	2.6	21

#	Article	IF	CITATIONS
109	Low crystalline 1T-MoS2@S-doped carbon hollow spheres as an anode material for Lithium-ion battery. Journal of Colloid and Interface Science, 2021, 601, 411-417.	9.4	21
110	Flexible dye-sensitized ZnO quantum dots solar cells. RSC Advances, 2012, 2, 9565.	3.6	20
111	Hierarchical LiZnVO < sub > 4 < /sub > @C nanostructures with enhanced cycling stability for lithium-ion batteries. Dalton Transactions, 2015, 44, 7967-7972.	3.3	20
112	Plasmonic Effects of Silver Nanoparticles Embedded in the Counter Electrode on the Enhanced Performance of Dye-Sensitized Solar Cells. Langmuir, 2018, 34, 5367-5373.	3.5	20
113	Anatase TiO ₂ Quantum Dots with a Narrow Band Gap of 2.85 eV Based on Surface Hydroxyl Groups Exhibiting Significant Photodegradation Property. European Journal of Inorganic Chemistry, 2018, 2018, 1506-1510.	2.0	20
114	Facile synthesis of VN hollow spheres as an anode for lithium-ion battery. Journal of Electroanalytical Chemistry, 2019, 848, 113360.	3.8	20
115	Cu2S hollow spheres as an anode for high-rate sodium storage performance. Journal of Electroanalytical Chemistry, 2020, 874, 114523.	3.8	20
116	Composite of K-doped (NH ₄) ₂ V ₃ O ₈ /graphene as an anode material for sodium-ion batteries. Dalton Transactions, 2015, 44, 18864-18869.	3.3	19
117	Rutile TiO 2 mesocrystals with tunable subunits as a long-term cycling performance anode for sodium-ion batteries. Journal of Alloys and Compounds, 2017, 699, 455-462.	5.5	19
118	Realization of ultra-long columnar single crystals in TiO ₂ nanotube arrays as fast electron transport channels for high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2019, 7, 11520-11529.	10.3	19
119	ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells. Scientific Reports, 2015, 5, 11499.	3.3	18
120	Highly efficient Zn2SnO4 perovskite solar cells through band alignment engineering. Chemical Communications, 2019, 55, 14673-14676.	4.1	18
121	Selective Synthesis of Rutile, Anatase, and Brookite Nanorods by a Hydrothermal Route. Current Nanoscience, 2010, 6, 479-482.	1.2	18
122	Highly Efficient Perovskite Solar Cells Based on Zn ₂ Ti ₃ O ₈ Nanoparticles as Electron Transport Material. ChemSusChem, 2018, 11, 424-431.	6.8	17
123	In situ synthesis of g-C3N4 by glass-assisted annealing route to boost the efficiency of perovskite solar cells. Journal of Colloid and Interface Science, 2021, 591, 326-333.	9.4	17
124	Enhanced electrochemical performance of ammonium vanadium bronze through sodium cation intercalation and optimization of electrolyte. Journal of Colloid and Interface Science, 2014, 418, 273-276.	9.4	15
125	Synthesis of anatase TiO2 mesocrystals with highly exposed low-index facets for enhanced electrochemical performance. Electrochimica Acta, 2019, 319, 101-109.	5.2	15
126	Understanding the growth and photoelectrochemical properties of mesocrystals and single crystals: a case of anatase TiO ₂ . Physical Chemistry Chemical Physics, 2014, 16, 7441-7447.	2.8	14

#	Article	IF	CITATIONS
127	Synthesis of hierarchically mesoporous TiO2 spheres via a emulsion polymerization route for superior lithium-ion batteries. Journal of Electroanalytical Chemistry, 2018, 818, 1-9.	3.8	14
128	A hierarchical composite of GeO ₂ nanotubes/N-doped carbon microspheres with high-rate and super-durable performance for lithium-ion batteries. Chemical Communications, 2019, 55, 14319-14322.	4.1	14
129	In situ fabrication of ZnO–MoO2/C hetero-phase nanocomposite derived from MOFs with enhanced performance for lithium storage. Journal of Alloys and Compounds, 2020, 817, 152728.	5. 5	14
130	SnS2 nanosheets anchored on porous carbon fibers for high performance of sodium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 862, 114021.	3.8	14
131	Ionic Liquidâ€Assisted Crystallization and Defect Passivation for Efficient Perovskite Solar Cells with Enhanced Openâ€Circuit Voltage. ChemSusChem, 2022, 15, .	6.8	14
132	Nanocomposite Li ₃ V ₂ (PO ₄) ₃ /carbon as a cathode material with high rate performance and long-term cycling stability in lithium-ion batteries. RSC Advances, 2015, 5, 57127-57132.	3.6	13
133	Improving the efficiency of dye-sensitized solar cells by photoanode surface modifications. Science China Materials, 2016, 59, 867-883.	6.3	13
134	ZnO nanosheets encapsulating graphene quantum dots with enhanced performance for dye-sensitized solar cell. Journal of Electroanalytical Chemistry, 2019, 840, 160-164.	3.8	13
135	Hierarchical Porous Anatase TiO2 Microspheres with High-Rate and Long-Term Cycling Stability for Sodium Storage in Ether-Based Electrolyte. ACS Applied Energy Materials, 2020, 3, 3619-3627.	5.1	13
136	In Situ Confined Co5Ge3 Alloy Nanoparticles in Nitrogen-Doped Carbon Nanotubes for Boosting Lithium Storage. ACS Applied Materials & Samp; Interfaces, 2020, 12, 46247-46253.	8.0	11
137	The optimized interface engineering of VS2 as cathodes for high performance all-solid-state lithium-ion battery. Science China Technological Sciences, 2022, 65, 1859-1866.	4.0	11
138	Heterogeneous TiO2@Nb2O5 composite as a high-performance anode for lithium-ion batteries. Scientific Reports, 2017, 7, 7204.	3.3	10
139	Covering effect of conductive glass: a facile route to tailor the grain growth of hybrid perovskites for highly efficient solar cells. Journal of Materials Chemistry A, 2018, 6, 20289-20296.	10.3	10
140	Bis(phenothiazylâ€ethynylene)â€Based Organic Dyes Containing Diâ€Anchoring Groups with Efficiency Comparable to N719 for Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2017, 12, 332-340.	3.3	9
141	Preparation of SnS2/enteromorpha prolifera derived carbon composite and its performance of sodium-ion batteries. Journal of Physics and Chemistry of Solids, 2021, 152, 109976.	4.0	9
142	Open-framework germanates derived GeO2/C nanocomposite as a long-life and high-capacity anode for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 881, 160533.	5.5	9
143	Tin-based metal-phosphine complexes nanoparticles as long-cycle life electrodes for high-performance hybrid supercapacitors. Journal of Colloid and Interface Science, 2022, 606, 148-157.	9.4	8
144	Dual-carbon materials coated Ge/Si composite for high performance lithium-ion batteries. Electrochimica Acta, 2022, 417, 140337.	5.2	8

#	Article	IF	Citations
145	TiO ₂ Mesocrystals Processed at Low Temperature as the Electronâ€Transport Material in Perovskite Solar Cells. ChemSusChem, 2020, 13, 5256-5263.	6.8	7
146	Stable Li-ion storage in Ge/N-doped carbon microsphere anodes. Nanoscale, 2021, 13, 5307-5315.	5.6	7
147	Two-dimentional MoSe2/chitosan-derived nitrogen-doped carbon composite enabling stable sodium/potassium storage. Journal of Physics and Chemistry of Solids, 2022, 163, 110573.	4.0	7
148	Nitrogen-doped carbon coated silicon derived from a facile strategy with enhanced performance for lithium storage. Functional Materials Letters, 2016, 09, 1650055.	1.2	6
149	Hierarchically structural Ge encapsulated with nitrogen-doped carbon for high performance lithium storage. Journal of Electroanalytical Chemistry, 2019, 832, 182-188.	3.8	6
150	A composite of ultra-fine few-layer MoS ₂ structures embedded on N,P-co-doped bio-carbon for high-performance sodium-ion batteries. New Journal of Chemistry, 2020, 44, 2046-2052.	2.8	6
151	Facile fabrication of WS ₂ nanocrystals confined in chlorella-derived N, P co-doped bio-carbon for sodium-ion batteries with ultra-long lifespan. Dalton Transactions, 2021, 50, 14745-14752.	3.3	6
152	Algal residues-engaged formation of novel WVO4/V3Se4 hybrid nanostructure with carbon fiber confinement for enhanced long-term cycling stability in sodium/potassium storage. Journal of Alloys and Compounds, 2021, 892, 162177.	5 . 5	6
153	Recent Progress in Preparation and Lithiumâ€ion Storage Properties of TiO ₂ Mesocrystals. Journal of the Chinese Chemical Society, 2015, 62, 209-216.	1.4	5
154	Synthesis of the Se-HPCF composite <i>via</i> a liquid-solution route and its stable cycling performance in Li–Se batteries. Dalton Transactions, 2020, 49, 14536-14542.	3.3	5
155	Hierarchical structure TiNb ₂ O ₇ microspheres derived from titanate for high-performance lithium-ion batteries. CrystEngComm, 2021, 23, 4905-4909.	2.6	5
156	Selfâ€Optimizing Effect in Lithium Storage of GeO ₂ Induced by Heterointerface Regulation. Small, 2022, 18, e2106067.	10.0	5
157	Structure Engineering of BiSbS _{<i>x</i>} Nanocrystals Embedded within Sulfurized Polyacrylonitrile Fibers for High Performance of Potassiumâ€ion Batteries. Chemistry - A European Journal, 2022, 28, .	3.3	5
158	A new neodymium–phosphine compound for supercapacitors with long-term cycling stability. Chemical Communications, 2021, 57, 5933-5936.	4.1	4
159	Defect passivation of a perovskite film by ZnIn ₂ S ₄ nanosheets for efficient and stable perovskite solar cells. Chemical Communications, 2022, 58, 653-656.	4.1	4
160	A General Synthesis of Mesoporous Hollow Carbon Spheres with Extraordinary Sodium Storage Kinetics by Engineering Solvation Structure. Small, 2022, 18, e2106513.	10.0	4
161	Construction of FeS2@C coated with reduced graphene oxide as high-performance anode for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2022, 918, 116467.	3.8	4
162	High stability and high performance nitrogen doped carbon containers for lithium-ion batteries. Journal of Colloid and Interface Science, 2022, 625, 692-699.	9.4	3

#	Article	IF	CITATION
163	A thioacetamide interlayer anchoring TiO 2 and (FAPbI 3) 1â^² x (MAPbBr 3) x for highâ€performance perovskite solar cells. Journal of the American Ceramic Society, 2021, 104, 5120-5126.	3.8	2
164	Inâ€Situ Growth Mirrorâ€Like Cobalt Sulfide Nanosheets on ITO for High Efficiency Counter Electrode of Dyeâ€Sensitized Solar Cells**. ChemistrySelect, 2021, 6, 7537-7541.	1.5	2
165	Dual-phase TiO2 hollow microspheres as a superior anode for sodium ion battery. Journal of Electroanalytical Chemistry, 2021, 899, 115687.	3.8	2
166	Realizing reversible conversion-alloying of GeO2/N-doped carbon nanocomposite with oxygen vacancies for lithium-ion batteries. Materials Today Nano, 2022, 18, 100196.	4.6	2
167	A composite of two dimensional GeSe2/nitrogenâ€doped reduced graphene oxide for enhanced capacitive lithiumâ€ion storage. Chemistry - A European Journal, 2022, , .	3.3	2
168	Conductive-free Zn2GeO4@multi-walled carbon nanotubes for high-performance lithium-ion storage. Journal of Alloys and Compounds, 2022, , 165720.	5 . 5	1
169	Highly Efficient Degradation of Tobacco Specific Nâ€Nitrosamines by TiO ₂ Mesocrystals with Robust and Tailored Microporous Structure. ChemistrySelect, 2018, 3, 10266-10270.	1.5	O