
Brennan Decker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9343930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Pan-Tumor Landscape of Targetable Kinase Fusions in Circulating Tumor DNA. Clinical Cancer Research, 2022, 28, 728-737.	7.0	20
2	Expanding the use of targeted therapy for urothelial bladder cancer (UBC): Non- <i>FGFR3</i> receptor tyrosine kinase (RTK) gene rearrangements (ReAr) and fusions (fus) Journal of Clinical Oncology, 2022, 40, 550-550.	1.6	0
3	Association of <i>RB1</i> mutational status with overall genomic landscape in neuroendocrine prostate cancer (NEPC) Journal of Clinical Oncology, 2022, 40, 156-156.	1.6	0
4	Abstract P5-13-02: Serially biopsied <i>BRCA1/2</i> mutant breast tumors frequently acquire alterations in <i>BRCA1, BRCA2,</i> and <i>CREBBP</i> . Cancer Research, 2022, 82, P5-13-02-P5-13-02.	0.9	0
5	Impact of PD-L1 expression on conventional urothelial bladder carcinoma (UBC) genomic alteration (GA) profile Journal of Clinical Oncology, 2022, 40, 563-563.	1.6	0
6	Genomic classification of clinically advanced major genito-urinary cancers (GUca) based on methylthioadenosine phosphorylase (<i>MTAP</i>) genomic loss Journal of Clinical Oncology, 2022, 40, 164-164.	1.6	0
7	Comprehensive genomic profiling (CGP) of chromophobe renal cell carcinoma (chrRCC) compared with clear cell RCC (ccRCC): Impact of <i>FLCN</i> genomic alteration (GA) status Journal of Clinical Oncology, 2022, 40, 292-292.	1.6	0
8	Prevalence of UV Mutational Signatures Among Cutaneous Primary Tumors. JAMA Network Open, 2022, 5, e223833.	5.9	11
9	OUP accepted manuscript. Oncologist, 2022, , .	3.7	1
10	Clinicopathologic and Genomic Landscape of Non-Small Cell Lung Cancer Brain Metastases. Oncologist, 2022, 27, 839-848.	3.7	18
11	Homologous Recombination Repair in Biliary Tract Cancers: A Prime Target for PARP Inhibition?. Cancers, 2022, 14, 2561.	3.7	4
12	Breast Cancer Risk Genes — Association Analysis in More than 113,000 Women. New England Journal of Medicine, 2021, 384, 428-439.	27.0	532
13	Genomic landscape of <i>MSH6</i> -mutated clinically advanced castrate-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2021, 39, 5062-5062.	1.6	1
14	Pan-cancer landscape of <i>CD274</i> (PD-L1) copy number changes in 244 584 patient samples and the correlation with PD-L1 protein expression. , 2021, 9, e002680.		13
15	Genomic landscape of non-small cell lung cancer (NSCLC) with methylthioadenosine phosphorylase (<i>MTAP</i>) deletion Journal of Clinical Oncology, 2021, 39, 9116-9116.	1.6	0
16	Clinically advanced pelvic squamous cell carcinomas (pSCC) in men and women: A comprehensive genomic profiling (CGP) study Journal of Clinical Oncology, 2021, 39, 3130-3130.	1.6	1
17	Comprehensive molecular profiling of pleural mesothelioma according to histologic subtype Journal of Clinical Oncology, 2021, 39, 8555-8555.	1.6	Ο
18	Pan-cancer analysis of <i>CD274</i> (PD-L1) mutations in 314,631 patient samples and subset correlation with PD-L1 protein expression Journal of Clinical Oncology, 2021, 39, 2605-2605.	1.6	0

BRENNAN DECKER

#	Article	IF	CITATIONS
19	Clinicopathologic and Genomic Landscape of Breast Carcinoma Brain Metastases. Oncologist, 2021, 26, 835-844.	3.7	16
20	Abstract 2231: Utility of plasma tumor fraction (TF) to inform sensitivity of FoundationOne Liquid CDx (F1LCDx). Cancer Research, 2021, 81, 2231-2231.	0.9	6
21	Contrasting genomic profiles from metastatic sites, primary tumors, and liquid biopsies of advanced prostate cancer. Cancer, 2021, 127, 4557-4564.	4.1	5
22	Identification of KMT2A-ARHGEF12 fusion in a child with a high-grade B-cell lymphoma. Cancer Genetics, 2021, 258-259, 23-26.	0.4	4
23	Germline Sequencing Improves Tumor-Only Sequencing Interpretation in a Precision Genomic Study of Patients With Pediatric Solid Tumor. JCO Precision Oncology, 2021, 5, 1840-1852.	3.0	8
24	Cancer Risks Associated With Germline <i>PALB2</i> Pathogenic Variants: An International Study of 524 Families. Journal of Clinical Oncology, 2020, 38, 674-685.	1.6	270
25	Peptide–TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nature Biotechnology, 2020, 38, 320-332.	17.5	210
26	Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nature Communications, 2019, 10, 1489.	12.8	220
27	Prevalence of <i>BRCA1</i> and <i>BRCA2</i> pathogenic variants in a large, unselected breast cancer cohort. International Journal of Cancer, 2019, 144, 1195-1204.	5.1	31
28	Targeted Resequencing of the Coding Sequence of 38 Genes Near Breast Cancer GWAS Loci in a Large Case–Control Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 822-825.	2.5	7
29	Inherited mutations in <i>BRCA1</i> and <i>BRCA2</i> in an unselected multiethnic cohort of Asian patients with breast cancer and healthy controls from Malaysia. Journal of Medical Genetics, 2018, 55, 97-103.	3.2	34
30	Differential Burden of Rare and Common Variants on Tumor Characteristics, Survival, and Mode of Detection in Breast Cancer. Cancer Research, 2018, 78, 6329-6338.	0.9	19
31	Prediction of DNA Repair Inhibitor Response in Short-Term Patient-Derived Ovarian Cancer Organoids. Cancer Discovery, 2018, 8, 1404-1421.	9.4	311
32	Topology of Interactions between Titin Molecules and Myosin Thick Filaments. Biophysical Journal, 2018, 114, 646a.	0.5	1
33	Topology of interaction between titin and myosin thick filaments. Journal of Structural Biology, 2018, 203, 46-53.	2.8	5
34	Rare, protein-truncating variants in <i>ATM</i> , <i>CHEK2</i> and <i>PALB2</i> , but not <i>XRCC2</i> , are associated with increased breast cancer risks. Journal of Medical Genetics, 2017, 54, 732-741.	3.2	68
35	Whole exome sequencing in 75 high-risk families with validation and replication in independent case-control studies identifies <i>TANGO2</i> , <i>OR5H14</i> , and <i>CHAD</i> as new prostate cancer susceptibility genes. Oncotarget, 2017, 8, 1495-1507.	1.8	11
36	Biallelic BRCA2 Mutations Shape the Somatic Mutational Landscape of Aggressive Prostate Tumors. American Journal of Human Genetics, 2016, 98, 818-829.	6.2	34

BRENNAN DECKER

#	Article	IF	CITATIONS
37	No evidence that protein truncating variants in <i>BRIP1</i> are associated with breast cancer risk: implications for gene panel testing. Journal of Medical Genetics, 2016, 53, 298-309.	3.2	94
38	Homologous Mutation to Human BRAF V600E Is Common in Naturally Occurring Canine Bladder Cancer—Evidence for a Relevant Model System and Urine-Based Diagnostic Test. Molecular Cancer Research, 2015, 13, 993-1002.	3.4	117
39	Comparison against 186 canid whole-genome sequences reveals survival strategies of an ancient clonally transmissible canine tumor. Genome Research, 2015, 25, 1646-1655.	5.5	63
40	Dysregulation of the homeobox transcription factor gene HOXB13: role in prostate cancer. Pharmacogenomics and Personalized Medicine, 2014, 7, 193.	0.7	25
41	A Copy Number Variant at the KITLG Locus Likely Confers Risk for Canine Squamous Cell Carcinoma of the Digit. PLoS Genetics, 2013, 9, e1003409.	3.5	60
42	Structure of Synthetic Vertebrate Myosin Thick Filaments Explored with High-Resolution AFM. Biophysical Journal, 2013, 104, 308a-309a.	0.5	0
43	Variation of BMP3 Contributes to Dog Breed Skull Diversity. PLoS Genetics, 2012, 8, e1002849.	3.5	159
44	Making a definitive diagnosis: Successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genetics in Medicine, 2011, 13, 255-262.	2.4	651
45	Periodically Arranged Interactions within the Myosin Filament Backbone Revealed by Mechanical Unzipping. Journal of Molecular Biology, 2008, 377, 307-310.	4.2	12