Seyed Ehsan Enderami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9343853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Injectable nanocomposite hydrogels as an emerging platform for biomedical applications: A review. Materials Science and Engineering C, 2021, 131, 112489.	7.3	55
2	Generation of insulin-producing cells from human induced pluripotent stem cells on PLLA/PVA nanofiber scaffold. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1062-1069.	2.8	53
3	PCL/PVA nanofibrous scaffold improve insulin-producing cells generation from human induced pluripotent stem cells. Gene, 2018, 671, 50-57.	2.2	51
4	Generation of insulinâ€producing cells from human adiposeâ€derived mesenchymal stem cells on PVA scaffold by optimized differentiation protocol. Journal of Cellular Physiology, 2018, 233, 4327-4337.	4.1	50
5	Antiâ€inflammatory and antiâ€ŧumor effects of α-l-guluronic acid (G2013) on cancer-related inflammation in a murine breast cancer model. Biomedicine and Pharmacotherapy, 2018, 98, 793-800.	5.6	43
6	Insulin producing cells generation by overexpression of miR-375 in adipose-derived mesenchymal stem cells from diabetic patients. Biologicals, 2017, 46, 23-28.	1.4	40
7	Platelet-rich plasma incorporated electrospun PVA-chitosan-HA nanofibers accelerates osteogenic differentiation and bone reconstruction. Gene, 2019, 720, 144096.	2.2	40
8	Generation of Insulinâ€Producing Cells From Humanâ€Induced Pluripotent Stem Cells Using a Stepwise Differentiation Protocol Optimized With Plateletâ€Rich Plasma. Journal of Cellular Physiology, 2017, 232, 2878-2886.	4.1	39
9	Decellularized Wharton's jelly extracellular matrix as a promising scaffold for promoting hepatic differentiation of human induced pluripotent stem cells. Journal of Cellular Biochemistry, 2019, 120, 6683-6697.	2.6	39
10	Enhanced chondrogenesis of human bone marrow mesenchymal Stem Cell (BMSC) on nanofiber-based polyethersulfone (PES) scaffold. Gene, 2018, 643, 98-106.	2.2	38
11	Improved osteogenic differentiation of human induced pluripotent stem cells cultured on polyvinylidene fluoride/collagen/plateletâ€rich plasma composite nanofibers. Journal of Cellular Physiology, 2020, 235, 1155-1164.	4.1	38
12	Targeting of crosstalk between tumor and tumor microenvironment by βâ€D mannuronic acid (M2000) in murine breast cancer model. Cancer Medicine, 2017, 6, 640-650.	2.8	37
13	Improved stem cell therapy of spinal cord injury using GDNF-overexpressed bone marrow stem cells in a rat model. Biologicals, 2017, 50, 73-80.	1.4	35
14	Microâ€RNAâ€incorporated electrospun nanofibers improve osteogenic differentiation of humanâ€induced pluripotent stem cells. Journal of Biomedical Materials Research - Part A, 2020, 108, 377-386.	4.0	34
15	<i>In vitro</i> osteogenic differentiation of stem cells with different sources on composite scaffold containing natural bioceramic and polycaprolactone. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 300-307.	2.8	31
16	Incorporatedâ€bFGF polycaprolactone/polyvinylidene fluoride nanocomposite scaffold promotes human induced pluripotent stem cells osteogenic differentiation. Journal of Cellular Biochemistry, 2019, 120, 16750-16759.	2.6	31
17	Differentiation of conjunctiva mesenchymal stem cells into secreting islet beta cells on plasma treated electrospun nanofibrous scaffold. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 178-187.	2.8	30
18	Synergistic effects of polyaniline and pulsed electromagnetic field to stem cells osteogenic differentiation on polyvinylidene fluoride scaffold. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 3058-3066.	2.8	30

#	Article	IF	CITATIONS
19	The role of nitric oxide signaling in renoprotective effects of hydrogen sulfide against chronic kidney disease in rats: Involvement of oxidative stress, autophagy and apoptosis. Journal of Cellular Physiology, 2019, 234, 11411-11423.	4.1	30
20	Electrospun polyâ€ <scp>l</scp> â€lactic acid/polyvinyl alcohol nanofibers improved insulinâ€producing cell differentiation potential of human adiposeâ€derived mesenchymal stem cells. Journal of Cellular Biochemistry, 2019, 120, 9917-9926.	2.6	29
21	Aloe Vera–Derived Gel-Blended PHBV Nanofibrous Scaffold for Bone Tissue Engineering. ASAIO Journal, 2020, 66, 966-973.	1.6	29
22	Improvement of hepatogenic differentiation of iPS cells on an aligned polyethersulfone compared to random nanofibers. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 853-860.	2.8	28
23	The effect of nanofibre-based polyethersulfone (PES) scaffold on the chondrogenesis of human induced pluripotent stem cells. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-9.	2.8	27
24	Generation of high-yield insulin producing cells from human-induced pluripotent stem cells on polyethersulfone nanofibrous scaffold. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 733-739.	2.8	26
25	Application of a novel bioreactor for in vivo engineering of pancreas tissue. Journal of Cellular Physiology, 2018, 233, 3805-3816.	4.1	26
26	Collagen coated electrospun polyethersulfon nanofibers improved insulin producing cells differentiation potential of human induced pluripotent stem cells. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 734-739.	2.8	26
27	Decellularized Pancreas Matrix Scaffolds for Tissue Engineering Using Ductal or Arterial Catheterization. Cells Tissues Organs, 2018, 205, 72-84.	2.3	26
28	Comparison of osteogenic differentiation potential of induced pluripotent stem cells on 2D and 3D polyvinylidene fluoride scaffolds. Journal of Cellular Physiology, 2019, 234, 17854-17862.	4.1	26
29	Different osteogenic differentiation potential of mesenchymal stem cells on three different polymeric substrates. Gene, 2020, 740, 144534.	2.2	24
30	A3 Adenosine Receptor Agonist Inhibited Survival of Breast Cancer Stem Cells via GLI-1 and ERK1/2 Pathway. Journal of Cellular Biochemistry, 2017, 118, 2909-2920.	2.6	23
31	Enhanced chondrogenesis differentiation of human induced pluripotent stem cells by MicroRNA-140 and transforming growth factor beta 3 (TGFβ3). Biologicals, 2018, 52, 30-36.	1.4	23
32	Decellularized amniotic membrane Scaffolds improve differentiation of iPSCs to functional hepatocyteâ€like cells. Journal of Cellular Biochemistry, 2020, 121, 1169-1181.	2.6	23
33	Adiposeâ€derived stem cellsâ€conditioned medium improved osteogenic differentiation of induced pluripotent stem cells when grown on polycaprolactone nanofibers. Journal of Cellular Physiology, 2019, 234, 10315-10323.	4.1	21
34	Overexpression of miR-219 promotes differentiation of human induced pluripotent stem cells into pre-oligodendrocyte. Journal of Chemical Neuroanatomy, 2018, 91, 8-16.	2.1	20
35	New Approach for Differentiation of Bone Marrow Mesenchymal Stem Cells Toward Chondrocyte Cells With Overexpression of MicroRNA-140. ASAIO Journal, 2018, 64, 662-672.	1.6	20
36	Derivation of male germ cells from induced pluripotent stem cells by inducers: A review. Cytotherapy, 2018, 20, 279-290.	0.7	17

#	Article	IF	CITATIONS
37	The role of microRNAs in embryonic stem cell and induced pluripotent stem cell differentiation in male germ cells. Journal of Cellular Physiology, 2019, 234, 12278-12289.	4.1	16
38	A novel silk/PES hybrid nanofibrous scaffold promotes the in vitro proliferation and differentiation of adiposeâ€derived mesenchymal stem cells into insulin producing cells. Polymers for Advanced Technologies, 2020, 31, 1857-1864.	3.2	16
39	Electrospun silk nanofibers improve differentiation potential of human induced pluripotent stem cells to insulin producing cells. Materials Science and Engineering C, 2020, 108, 110398.	7.3	15
40	The effect of PLLA/PVA nanofibrous scaffold on the chondrogenesis of human induced pluripotent stem cells. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 669-677.	3.4	14
41	Evaluation of hypoxia inducible factor-1 alpha gene expression in colorectal cancer stages of Iranian patients. Journal of Cancer Research and Therapeutics, 2016, 12, 1313.	0.9	13
42	Bone morphogenetic proteinâ€7 incorporated polycaprolactone scaffold has a great potential to improve survival and proliferation rate of the human embryonic kidney cells. Journal of Cellular Biochemistry, 2019, 120, 9859-9868.	2.6	12
43	PHBV nanofibers promotes insulin-producing cells differentiation of human induced pluripotent stem cells. Gene, 2021, 768, 145333.	2.2	12
44	The use of mesenchymal stem cells in the process of treatment and tissue regeneration after recovery in patients with Covid-19. Gene, 2021, 777, 145471.	2.2	12
45	Three-dimensional nanofiberous PLLA/PCL scaffold improved biochemical and molecular markers hiPS cell-derived insulin-producing islet-like cells. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 685-692.	2.8	11
46	Hepatitis A infection in patients with chronic viral liver disease: a cross-sectional study in Jahrom, Iran. Epidemiology and Infection, 2015, 143, 534-539.	2.1	10
47	Improved chondrogenic response of mesenchymal stem cells to a polyethersulfone/polyaniline blended nanofibrous scaffold. Journal of Cellular Biochemistry, 2019, 120, 11358-11365.	2.6	10
48	Mouse bone marrow-derived mesenchymal stem cells acquire immunogenicity concurrent with differentiation to insulin-producing cells. Immunobiology, 2020, 225, 151994.	1.9	10
49	Osteogenic Differentiation of Induced Pluripotent Stem Cells on Electrospun Nanofibers: A Review of Literature. Materials Today Communications, 2020, 25, 101561.	1.9	9
50	MicroRNA â€2861 and nanofibrous scaffold synergistically promote human induced pluripotent stem cells osteogenic differentiation. Polymers for Advanced Technologies, 2020, 31, 2259.	3.2	8
51	Evaluation of Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cell on Highly Porous Polycaprolactone Scaffold Reinforced With Layered Double Hydroxides Nanoclay. Frontiers in Bioengineering and Biotechnology, 2022, 10, 805969.	4.1	8
52	Derivation of preoligodendrocytes from humanâ€induced pluripotent stem cells through overexpression of microRNA 338. Journal of Cellular Biochemistry, 2019, 120, 9700-9708.	2.6	7
53	Comparison of humanâ€induced pluripotent stem cells and mesenchymal stem cell differentiation potential to insulin producing cells in 2D and 3D culture systems in vitro. Journal of Cellular Physiology, 2020, 235, 4239-4246.	4.1	7
54	Retinoic acid and 17βâ€estradiol improve male germ cell differentiation from mouseâ€induced pluripotent stem cells. Andrologia, 2020, 52, e13466.	2.1	6

#	Article	IF	CITATIONS
55	Retinoic acid and/or progesterone differentiate mouse induced pluripotent stem cells into male germ cells in vitro. Journal of Cellular Biochemistry, 2020, 121, 2159-2169.	2.6	5
56	The Role of MicroRNAs in the Induction of Pancreatic Differentiation. Current Stem Cell Research and Therapy, 2021, 16, 145-154.	1.3	5
57	Nisin and non-essential amino acids: new perspective in differentiation of neural progenitors from human-induced pluripotent stem cells in vitro. Human Cell, 2021, 34, 1142-1152.	2.7	5
58	Treatment of diabetic mice by microfluidic system-assisted transplantation of stem cells-derived insulin-producing cells transduced with miRNA. Life Sciences, 2021, 274, 119338.	4.3	5
59	A novel hybrid polymer of <scp>PCL</scp> /fish gelatin nanofibrous scaffold improves proliferation and differentiation of Wharton's jellyâ€derived mesenchymal cells into isletâ€like cells. Artificial Organs, 2022, 46, 1491-1503.	1.9	5
60	Improved biological behaviours and osteoinductive capacity of the gelatin nanofibers while composites with <scp>GO</scp> / <scp>MgO</scp> . Cell Biochemistry and Function, 2022, 40, 203-212.	2.9	4
61	The microenvironment of silk/gelatin nanofibrous scaffold improves proliferation and differentiation of Wharton's jelly-derived mesenchymal cells into islet-like cells. Gene, 2022, 833, 146586.	2.2	4
62	Application of iPSCs derived pancreatic β-like cells using pancreatic bio-scaffold. Experimental Cell Research, 2021, 405, 112667.	2.6	3
63	Different osteoconductivity of <scp>PLLA</scp> / <scp>PHB</scp> composite nanofibers prepared by one―and twoâ€nozzle electrospinning. Polymers for Advanced Technologies, 2021, 32, 1783-1792.	3.2	3
64	Electrospun silk nanofibers promoted the in vitro expansion potential of CD 133+ cells derived from umbilical cord blood. Gene, 2022, 809, 146005.	2.2	1
65	Bioinformatics analysis of Ronin gene and their potential role in pluripotency control. Gene Reports, 2018, 12, 218-224.	0.8	0
66	Differentiation of human induced pluripotent stem cells to megakaryocyte lineage by using 3D bioreactor, microfluidic system and acellular rat lung. Biochemical Engineering Journal, 2021, 165, 107822.	3.6	0
67	Generation of high yield insulin-producing cells (IPCs) from various sources of stem cells. Vitamins and Hormones, 2021, 116, 235-268.	1.7	0
68	Mesenchymal Stromal Cells and their EVs as Potential Leads for SARSCoV2 Treatment. Current Stem Cell Research and Therapy, 2023, 18, 35-53.	1.3	0