Senol Mutlu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9343387/publications.pdf

Version: 2024-02-01

		566801	454577
55	938	15	30
papers	citations	h-index	g-index
57	57	57	1173
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Flow Control Valves for Analytical Microfluidic Chips without Mechanical Parts Based on Thermally Responsive Monolithic Polymers. Analytical Chemistry, 2003, 75, 1958-1961.	3.2	189
2	Monolithic valves for microfluidic chips based on thermoresponsive polymer gels. Electrophoresis, 2003, 24, 3694-3702.	1.3	108
3	Shaped comb fingers for tailored electromechanical restoring force. Journal of Microelectromechanical Systems, 2003, 12, 373-383.	1.7	84
4	Advances in microfluidic devices made from thermoplastics used in cell biology and analyses. Biomicrofluidics, 2017, 11, 051502.	1.2	82
5	Europe and the Future for WPT : European Contributions to Wireless Power Transfer Technology. IEEE Microwave Magazine, 2017, 18, 56-87.	0.7	59
6	Functionalization of Reactive Polymeric Coatings via Diels–Alder Reaction Using Microcontact Printing. Macromolecular Chemistry and Physics, 2012, 213, 166-172.	1.1	42
7	Optical Power Delivery and Data Transmission in a Wireless and Batteryless Microsystem Using a Single Light Emitting Diode. Journal of Microelectromechanical Systems, 2015, 24, 155-165.	1.7	28
8	Post-fabrication electric field and thermal treatment of polymer light emitting diodes and their photovoltaic properties. Organic Electronics, 2009, 10, 18-26.	1.4	27
9	A 70-to-2 V Triboelectric Energy Harvesting System Utilizing Parallel-SSHI Rectifier and DC-DC Converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 210-223.	3.5	25
10	Design and fabrication of two-axis micromachined steel scanners. Journal of Micromechanics and Microengineering, 2009, 19, 075001.	1.5	24
11	Fabrication of a planar water gated organic field effect transistor using a hydrophilic polythiophene for improved digital inverter performance. Organic Electronics, 2014, 15, 646-653.	1.4	23
12	Modelling and Realization of a Water-Gated Field Effect Transistor (WG-FET) Using 16-nm-Thick Mono-Si Film. Scientific Reports, 2017, 7, 12190.	1.6	20
13	Optoelectronic CMOS Power Supply Unit for Electrically Isolated Microscale Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 747-756.	1.9	18
14	Fabrication of cyclo olefin polymer microfluidic devices for trapping and culturing of yeast cells. Biomedical Microdevices, 2017, 19, 40.	1.4	18
15	Magnetic Resonance Imagingâ€Compatible Optically Powered Miniature Wireless Modular Lorentz Force Actuators. Advanced Science, 2021, 8, 2002948.	5.6	18
16	Real-Time Performance of a Tactile Neuroprosthesis on Awake Behaving Rats. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1053-1062.	2.7	17
17	An Optically Powered CMOS Receiver System for Intravascular Magnetic Resonance Applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2, 683-691.	2.7	14
18	Self-terminating electrochemical etching of stainless steel for the fabrication of micro-mirrors. Journal of Micromechanics and Microengineering, 2010, 20, 095009.	1.5	13

#	Article	IF	CITATIONS
19	Realization of polymer charge pump circuits using polymer semiconductors. Organic Electronics, 2011, 12, 312-321.	1.4	13
20	Expanding the versatility of poly(dimethylsiloxane) through polymeric modification: an effective approach for improving triboelectric energy harvesting performance. Smart Materials and Structures, 2020, 29, 035024.	1.8	12
21	A thermally responsive polymer microvalve without mechanical parts photo-patterned in a parylene channel., 0, , .		11
22	Optically Powered Optical Transmitter Using a Single Light-Emitting Diode. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 2003-2012.	3.5	11
23	Thin film based semi-active resonant marker design for low profile interventional cardiovascular MRI devices. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2017, 30, 93-101.	1.1	10
24	A microfabricated strain gauge array on polymer substrate for tactile neuroprostheses in rats. Journal of Micromechanics and Microengineering, 2016, 26, 084006.	1.5	9
25	Polymer-MEMS-Based Optoelectronic Display. IEEE Transactions on Electron Devices, 2010, 57, 145-152.	1.6	7
26	Realization of a Planar Water-gated Field Effect Transistor (WG-FET) Using 16-nm-thick Single Crystalline Si Film. Procedia Engineering, 2014, 87, 76-79.	1.2	7
27	Thermoplastic microfluidic bioreactors with integrated electrodes to study tumor treating fields on yeast cells. Biomicrofluidics, 2020, 14, 034104.	1.2	7
28	Micromachined porous polymer for bubble free electro-osmotic pump., 0,,.		6
29	Improved Repeatability in Planar Water-gated Field Effect Transistor (WG-FET) with 16-nm-thick Single Crystalline Si Film. Procedia Engineering, 2016, 168, 1739-1742.	1.2	5
30	Cell trapping microfluidic chip made of Cyclo olefin polymer enabling two concurrent cell biology experiments with long term durability. Biomedical Microdevices, 2020, 22, 20.	1.4	5
31	Realization of triboelectric energy harvesters using steel-polymer microfabrication methods., 2017,,.		4
32	A low cost PS based microfluidic platform to investigate cell cycle towards developing a therapeutic strategy for cancer. Biomedical Microdevices, 2018, 20, 57.	1.4	4
33	A solution state diode using semiconductor polymer nanorods with nanogap electrodes. Nanotechnology, 2012, 23, 245203.	1.3	3
34	Realization and AC modeling of electronic circuits with water-gated field effect transistors (WG-FETs) based on gate probe distance. Journal of Micromechanics and Microengineering, 2018, 28, 115017.	1.5	3
35	Energy harvesting and data transmitting microsystem using a light emitting diode., 2011,,.		2
36	Fabrication of steel displacement amplifiers integrated to microfluidic channels., 2016,,.		2

#	Article	IF	CITATIONS
37	Investigation of the Salt Concentration Dependence of Water-Gated Field Effect Transistors (WG-FET) Using 16-nm-Thick Single Crystalline Si Film. Proceedings (mdpi), 2017, 1 , .	0.2	2
38	Maskless Electrochemical Patterning of Gold Films for Biosensors Using Micromachined Polyimide Probes., 0,,.		1
39	Displacement Sensor with Inherent Read-Out Circuit Using Water-Gated Field Effect Transistor (WG-FET). Proceedings (mdpi), 2018, 2, 926.	0.2	1
40	Increased yield of MoS2 monolayer exfoliation through the bimetallic corrosion of aluminum. Applied Physics Letters, 2018, 113, 213101.	1.5	1
41	Paper based integrated microfluidic system using electro-osmotic pumps with liquid bridges. , 2018, , .		1
42	Challenges in neural interface electronics: miniaturization and wireless operation., 2021,, 537-559.		1
43	Nano-Scale Abrasion Studies of Materials Used in MEMS Devices and Packages. , 2005, , 563.		0
44	Ion Spectroscopy Using Microfluidic FlowFETs. ECS Transactions, 2006, 3, 35-42.	0.3	0
45	Microfabricated Gate-Modulated Electrochemical Ion Spectroscopy Sensor., 2007,,.		0
46	Post fabrication electric field treatment of polymer light emitting and photovoltaic devices. , 2008, , .		0
47	PLED integrated FR4 MEMS display. , 2009, , .		0
48	An active microheater matrix using polymer semiconductor diodes for thermal patterning. Journal of Micromechanics and Microengineering, 2010, 20, 035019.	1.5	0
49	An RF front-end with optically powered CMOS power supply. , 2011, , .		0
50	Selectively thinned stainless steel scanners through electrical discharge machining., 2011,,.		0
51	Microfluidic channel integrated solution state diode using semiconductor polymer nanorods with nanogap electrodes. , 2012 , , .		0
52	Using a low-amplitude RF pulse at echo time (LARFET) for device localization in MRI. Medical and Biological Engineering and Computing, 2014, 52, 885-894.	1.6	0
53	Integration of Paper Based Electro-Osmotic Pumps to Continuous Microfluidic Channels. Proceedings (mdpi), 2018, 2, 870.	0.2	0
54	Improved Gain and Bandwidth of Water-Gated Field Effect Transistor (WG-FET) Circuits Using Solutions with Higher Ion Concentration. , 2019, , .		0

SENOL MUTLU

#	Article	IF	CITATIONS
55	Fabrication Protocol for Thermoplastic Microfluidic Devices: Nanoliter Volume Bioreactors for Cell Culturing. Methods in Molecular Biology, 2021, , 1.	0.4	0