Stephen P Mackessy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9343252/publications.pdf

Version: 2024-02-01

148 papers 6,486 citations

57758 44 h-index 79698 73 g-index

155 all docs

155 docs citations

155 times ranked 4311 citing authors

#	Article	IF	Citations
1	Evidence for an ancient adaptive episode of convergent molecular evolution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8986-8991.	7.1	284
2	The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20645-20650.	7.1	260
3	An aqueous endpoint assay of snake venom phospholipase A2. Toxicon, 1996, 34, 1149-1155.	1.6	204
4	Venom Ontogeny in the Pacific Rattlesnakes Crotalus viridis helleri and C. v. oreganus. Copeia, 1988, 1988, 92.	1.3	195
5	Bayesian mixed models and the phylogeny of pitvipers (Viperidae: Serpentes). Molecular Phylogenetics and Evolution, 2006, 39, 91-110.	2.7	189
6	Denmotoxin, a Three-finger Toxin from the Colubrid Snake Boiga dendrophila (Mangrove Catsnake) with Bird-specific Activity. Journal of Biological Chemistry, 2006, 281, 29030-29041.	3.4	183
7	Venom of the Brown Treesnake, Boiga irregularis: Ontogenetic shifts and taxa-specific toxicity. Toxicon, 2006, 47, 537-548.	1.6	166
8	Irditoxin, a novel covalently linked heterodimeric threeâ€finger toxin with high taxonâ€specific neurotoxicity. FASEB Journal, 2009, 23, 534-545.	0.5	165
9	Comparative phylogeography of pitvipers suggests a consensus of ancient Middle American highland biogeography. Journal of Biogeography, 2009, 36, 88-103.	3.0	157
10	Venom Proteomes of Closely RelatedSistrurusRattlesnakes with Divergent Diets. Journal of Proteome Research, 2006, 5, 2098-2112.	3.7	148
11	Functional basis of a molecular adaptation: Prey-specific toxic effects of venom from Sistrurus rattlesnakes. Toxicon, 2009, 53, 672-679.	1.6	131
12	Phylogeographic structure and historical demography of the western diamondback rattlesnake (Crotalus atrox): A perspective on North American desert biogeography. Molecular Phylogenetics and Evolution, 2007, 42, 193-212.	2.7	127
13	Evolutionary trends in venom composition in the Western Rattlesnakes (Crotalus viridis sensu lato): Toxicity vs. tenderizers. Toxicon, 2010, 55, 1463-1474.	1.6	117
14	Ontogenetic Variation in Venom Composition and Diet of Crotalus oreganus concolor: A Case of Venom Paedomorphosis?. Copeia, 2003, 2003, 769-782.	1.3	115
15	BIOCHEMISTRY AND PHARMACOLOGY OF COLUBRID SNAKE VENOMS. Toxin Reviews, 2002, 21, 43-83.	1.5	114
16	The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes. Genome Research, 2019, 29, 590-601.	5.5	114
17	The venom gland transcriptome of the Desert Massasauga Rattlesnake (Sistrurus catenatus) Tj ETQq1 1 0.7843	14 rgBT /O 3.0	Overlock 10 <mark>Tf</mark> 107
18	Comparative mitochondrial genomics of snakes: extraordinary substitution rate dynamics and functionality of the duplicate control region. BMC Evolutionary Biology, 2007, 7, 123.	3.2	96

#	Article	IF	CITATIONS
19	Expression of Venom Gene Homologs in Diverse Python Tissues Suggests a New Model for the Evolution of Snake Venom. Molecular Biology and Evolution, 2015, 32, 173-183.	8.9	93
20	Characterization of venom (Duvernoy's secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins. Toxicon, 2000, 38, 1663-1687.	1.6	91
21	Biochemical and pharmacological properties of a new thrombin-like serine protease (Russelobin) from the venom of Russell's Viper (Daboia russelii russelii) and assessment of its therapeutic potential. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3476-3488.	2.4	83
22	Identification and characterization of a taxon-specific three-finger toxin from the venom of the Green Vinesnake (Oxybelis fulgidus; family Colubridae). Biochimie, 2013, 95, 1923-1932.	2.6	81
23	Apoptosis induction in human breast cancer (MCF-7) cells by a novel venom l-amino acid oxidase (Rusvinoxidase) is independent of its enzymatic activity and is accompanied by caspase-7 activation and reactive oxygen species production. Apoptosis: an International Journal on Programmed Cell Death, 2015. 20. 1358-1372.	4.9	73
24	Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome. Genome Biology and Evolution, 2018, 10, 2110-2129.	2.5	72
25	Bioweapons synthesis and storage: The venom gland of front-fanged snakes. Zoologischer Anzeiger, 2006, 245, 147-159.	0.9	70
26	Comparative venomics of the Prairie Rattlesnake (Crotalus viridis viridis) from Colorado: Identification of a novel pattern of ontogenetic changes in venom composition and assessment of the immunoreactivity of the commercial antivenom CroFab®. Journal of Proteomics, 2015, 121, 28-43.	2.4	70
27	A proteomic analysis of Pakistan Daboia russelii russelii venom and assessment of potency of Indian polyvalent and monovalent antivenom. Journal of Proteomics, 2016, 144, 73-86.	2.4	68
28	Morphology and ultrastructure of the venom glands of the northern pacific rattlesnakeCrotalus viridis oreganus. Journal of Morphology, 1991, 208, 109-128.	1,2	63
29	Colubrid Venom Composition: An -Omics Perspective. Toxins, 2016, 8, 230.	3.4	61
30	Modeling nucleotide evolution at the mesoscale: The phylogeny of the Neotropical pitvipers of the Porthidium group (Viperidae: Crotalinae). Molecular Phylogenetics and Evolution, 2005, 37, 881-898.	2.7	60
31	Venom yields from several species of colubrid snakes and differential effects of ketamine. Toxicon, 1997, 35, 671-678.	1.6	58
32	Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes. Genome Biology, 2011, 12, 406.	9.6	58
33	Role of accelerated segment switch in exons to alter targeting (ASSET) in the molecular evolution of snake venom proteins. BMC Evolutionary Biology, 2009, 9, 146.	3.2	55
34	An analysis of venom ontogeny and prey-specific toxicity in the Monocled Cobra (Naja kaouthia). Toxicon, 2016, 119, 8-20.	1.6	55
35	Proteomic analysis reveals geographic variation in venom composition of Russell's Viper in the Indian subcontinent: implications for clinical manifestations post-envenomation and antivenom treatment. Expert Review of Proteomics, 2018, 15, 837-849.	3.0	54
36	Evaluating the Performance of De Novo Assembly Methods for Venom-Gland Transcriptomics. Toxins, 2018, 10, 249.	3.4	54

#	Article	IF	CITATIONS
37	Characterization of a Kunitz-type protease inhibitor peptide (Rusvikunin) purified from Daboia russelii russelii venom. International Journal of Biological Macromolecules, 2014, 67, 154-162.	7.5	52
38	RNA-seq and high-definition mass spectrometry reveal the complex and divergent venoms of two rear-fanged colubrid snakes. BMC Genomics, 2014, 15, 1061.	2.8	50
39	The Strike Behavior of a Congenitally Blind Rattlesnake. Journal of Herpetology, 1991, 25, 208.	0.5	49
40	Phylogenetically diverse diets favor more complex venoms in North American pitvipers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	48
41	The Effect of Moonlight on Activity Patterns of Adult and Juvenile Prairie Rattlesnakes (Crotalus) Tj ETQq1 1 0.784	4314 rgBT	/Qyerlock 1
42	Understanding Biological Roles of Venoms Among the Caenophidia: The Importance of Rear-Fanged Snakes. Integrative and Comparative Biology, 2016, 56, 1004-1021.	2.0	47
43	Transcriptomics-guided bottom-up and top-down venomics of neonate and adult specimens of the arboreal rear-fanged Brown Treesnake, Boiga irregularis, from Guam. Journal of Proteomics, 2018, 174, 71-84.	2.4	47
44	Presence of peptide inhibitors in rattlesnake venoms and their effects on endogenous metalloproteases. Toxicon, 2005, 45, 255-263.	1.6	46
45	Rear-fanged snake venoms: an untapped source of novel compounds and potential drug leads. Toxin Reviews, 2014, 33, 185-201.	3.4	46
46	Adaptive evolution of distinct prey-specific toxin genes in rear-fanged snake venom. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181003.	2.6	45
47	Snake Recombination Landscapes Are Concentrated in Functional Regions despite PRDM9. Molecular Biology and Evolution, 2020, 37, 1272-1294.	8.9	45
48	Variation in the Diet of Sistrurus catenatus (Massasauga), with Emphasis on Sistrurus catenatus edwardsii (Desert Massasauga). Journal of Herpetology, 2002, 36, 454-464.	0.5	43
49	Biochemical characterization of phospholipase A2 (trimorphin) from the venom of the Sonoran Lyre Snake Trimorphodon biscutatus lambda (family Colubridae). Toxicon, 2004, 44, 27-36.	1.6	43
50	Accelerated exchange of exon segments in Viperid three-finger toxin genes (Sistrurus catenatus) Tj ETQq0 0 0 rgE	3T/Overloc	ck ₄₃ 0 Tf 50 2
51	Molecular basis for prey relocation in viperid snakes. BMC Biology, 2013, 11, 20.	3.8	43
52	Incipient speciation with biased gene flow between two lineages of the Western Diamondback Rattlesnake (Crotalus atrox). Molecular Phylogenetics and Evolution, 2015, 83, 213-223.	2.7	43
53	The Tiger Rattlesnake genome reveals a complex genotype underlying a simple venom phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	43

Biological and proteomic analysis of venom from the Puerto Rican Racer (Alsophis portoricensis:) Tj ETQq0 0 0 rgBT $\frac{1}{1.6}$ Overlock $\frac{1}{42}$ 0 Tf 50 6

54

#	Article	IF	Citations
55	Evidence for divergent patterns of local selection driving venom variation in Mojave Rattlesnakes (Crotalus scutulatus). Scientific Reports, 2018, 8, 17622.	3.3	42
56	Pharmacological properties and pathophysiological significance of a Kunitz-type protease inhibitor (Rusvikunin-II) and its protein complex (Rusvikunin complex) purified from Daboia russelii russelii venom. Toxicon, 2014, 89, 55-66.	1.6	40
57	Effects of Temperature and Storage Conditions on the Electrophoretic, Toxic and Enzymatic Stability of Venom Components. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 119, 119-127.	1.6	38
58	Purification and characterization of a cysteine-rich secretory protein from Philodryas patagoniensis snake venom. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2009, 150, 79-84.	2.6	38
59	The disintegrin tzabcanin inhibits adhesion and migration in melanoma and lung cancer cells. International Journal of Biological Macromolecules, 2016, 88, 457-464.	7.5	35
60	Alsophinase, a new P-III metalloproteinase with $\hat{l}\pm$ -fibrinogenolytic and hemorrhagic activity from the venom of the rear-fanged Puerto Rican Racer Alsophis portoricensis (Serpentes: Dipsadidae). Biochimie, 2012, 94, 1189-1198.	2.6	34
61	Insight into the roles of selection in speciation from genomic patterns of divergence and introgression in secondary contact in venomous rattlesnakes. Ecology and Evolution, 2017, 7, 3951-3966.	1.9	34
62	Transcriptome-facilitated proteomic characterization of rear-fanged snake venoms reveal abundant metalloproteinases with enhanced activity. Journal of Proteomics, 2018, 187, 223-234.	2.4	34
63	Genetic surfing, not allopatric divergence, explains spatial sorting of mitochondrial haplotypes in venomous coralsnakes. Evolution; International Journal of Organic Evolution, 2016, 70, 1435-1449.	2.3	33
64	Cryptic genetic diversity, population structure, and gene flow in the Mojave rattlesnake (Crotalus) Tj ETQq0 0 0	rgBT_/Ove	erlogk 10 Tf 50
65	Electric shocks are ineffective in treatment of lethal effects of rattlesnake envenomation in mice. Toxicon, 1987, 25, 1347-1349.	1.6	32
66	Phenotypic Variation in Mojave Rattlesnake (Crotalus scutulatus) Venom Is Driven by Four Toxin Families. Toxins, 2018, 10, 135.	3.4	32
67	Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico. Toxins, 2018, 10, 35.	3.4	32
68	Fractionation of red diamond rattlesnake (Crotalus ruber ruber) venom: Protease, phosphodiesterase, l-amino acid oxidase activities and effects of metal ions and inhibitors on protease activity. Toxicon, 1985, 23, 337-340.	1.6	31
69	A comparative study of the effects of venoms from five rear-fanged snake species on the growth of Leishmania major: Identification of a protein with inhibitory activity against the parasite. Toxicon, 2011, 58, 28-34.	1.6	31
70	Venom proteomes of South and North American opisthoglyphous (Colubridae and Dipsadidae) snake species: A preliminary approach to understanding their biological roles. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2012, 7, 361-369.	1.0	31
71	Venoms of Rear-Fanged Snakes: New Proteins and Novel Activities. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	31
72	Fibrinogenolytic proteases from the venoms of juvenile and adult northern pacific rattlesnakes (Crotalus viridis oreganus). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1993, 106, 181-189.	0.2	30

#	Article	IF	Citations
73	Characterization of the major metalloprotease isolated from the venom of the northern Pacific rattlesnake, Crotalus viridis oreganus. Toxicon, 1996, 34, 1277-1285.	1.6	30
74	A new C-type lectin (RVsnaclec) purified from venom of Daboia russelii russelii shows anticoagulant activity via inhibition of FXa and concentration-dependent differential response to platelets in a Ca2+-independent manner. Thrombosis Research, 2014, 134, 1150-1156.	1.7	30
75	The effects of hybridization on divergent venom phenotypes: Characterization of venom from Crotalus scutulatus scutulatus Â×ÂCrotalus oreganus helleri hybrids. Toxicon, 2016, 120, 110-123.	1.6	30
76	Ontogenetic Change in the Venom of Mexican Black-Tailed Rattlesnakes (Crotalus molossus) Tj ETQq0 0 0 rgB	Г/Oyerlock	10 ₃₀ 50 622
77	Venom Ontogeny in the Mexican Lance-Headed Rattlesnake (Crotalus polystictus). Toxins, 2018, 10, 271.	3.4	29
78	Purification of a phospholipase A2 from Lonomia obliqua caterpillar bristle extract. Biochemical and Biophysical Research Communications, 2006, 342, 1027-1033.	2.1	28
79	Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution. PLoS Neglected Tropical Diseases, 2016, 10, e0004587.	3.0	27
80	The unique Duvernoy's secretion of the brown tree snake (Boiga irregularis). Toxicon, 1991, 29, 532-535.	1.6	26
81	Interrogating the Venom of the Viperid Snake Sistrurus catenatus edwardsii by a Combined Approach of Electrospray and MALDI Mass Spectrometry. PLoS ONE, 2015, 10, e0092091.	2.5	26
82	Allopatric divergence and secondary contact with gene flow: a recurring theme in rattlesnake speciation. Biological Journal of the Linnean Society, 2019, 128, 149-169.	1.6	25
83	Evaluation of cytotoxic activities of snake venoms toward breast (MCF-7) and skin cancer (A-375) cell lines. Cytotechnology, 2016, 68, 687-700.	1.6	24
84	The Field of Reptile Toxinology. , 2009, , 3-23.		23
85	Venom phenotypes of the Rock Rattlesnake (Crotalus lepidus) and the Ridge-nosed Rattlesnake () Tj ETQq1 1	0.784314 1.6	rgBT ₃ /Overloc
86	Venom Composition in a Phenotypically Variable Pit Viper (Trimeresurus insularis) across the Lesser Sunda Archipelago. Journal of Proteome Research, 2019, 18, 2206-2220.	3.7	23
87	Sensationalistic Journalism and Tales of Snakebite: Are Rattlesnakes Rapidly Evolving More Toxic Venom?. Wilderness and Environmental Medicine, 2010, 21, 35-45.	0.9	22
88	Disintegrins of Crotalus simus tzabcan venom: Isolation, characterization and evaluation of the cytotoxic and anti-adhesion activities of tzabcanin, a new RGD disintegrin. Biochimie, 2015, 116, 92-102.	2.6	22
89	Discrimination between Envenomated and Nonenvenomated Prey by Western Diamondback Rattlesnakes (Crotalus atrox): Chemosensory Consequences of Venom. Copeia, 1999, 1999, 640.	1.3	21
90	Microhabitat Use by Brown Treesnakes (Boiga irregularis): Effects of Moonlight and Prey. Journal of Herpetology, 2008, 42, 246-250.	0.5	20

#	Article	IF	Citations
91	Structural and functional characterization of complex formation between two Kunitz-type serine protease inhibitors from Russell's Viper venom. Biochimie, 2016, 128-129, 138-147.	2.6	20
92	Convergent evolution of toxin resistance in animals. Biological Reviews, 2022, 97, 1823-1843.	10.4	20
93	Autolysis at the disintegrin domain of patagonfibrase, a metalloproteinase from Philodryas patagoniensis (Patagonia Green Racer; Dipsadidae) venom. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1937-1942.	2.3	18
94	Trait differentiation and modular toxin expression in palm-pitvipers. BMC Genomics, 2020, 21, 147.	2.8	18
95	Handbook of Venoms and Toxins of Reptiles. , 0, , .		18
96	Title is missing!. Chemistry of Natural Compounds, 2001, 37, 562-565.	0.8	16
97	Spatial Ecology and Factors Influencing Movement Patterns of Desert Massasauga Rattlesnakes (Sistrurus catenatus edwardsii) in Southeastern Colorado. Copeia, 2011, 2011, 29-37.	1.3	16
98	Proteomic Deep Mining the Venom of the Red-Headed Krait, Bungarus flaviceps. Toxins, 2018, 10, 373.	3.4	16
99	Intraspecific sequence and gene expression variation contribute little to venom diversity in sidewinder rattlesnakes (<i>Crotalus cerastes</i>). Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190810.	2.6	16
100	Thrombin-Like Enzymes in Snake Venoms. , 2010, , 519-557.		16
101	Replacement and Parallel Simplification of Nonhomologous Proteinases Maintain Venom Phenotypes in Rear-Fanged Snakes. Molecular Biology and Evolution, 2020, 37, 3563-3575.	8.9	15
102	Cellular mechanism of resistance of human colorectal adenocarcinoma cells against apoptosis-induction by Russell's Viper venom I -amino acid oxidase (Rusvinoxidase). Biochimie, 2018, 150, 8-15.	2.6	14
103	Snake venom gene expression is coordinated by novel regulatory architecture and the integration of multiple co-opted vertebrate pathways. Genome Research, 2022, 32, 1058-1073.	5.5	14
104	The roles of balancing selection and recombination in the evolution of rattlesnake venom. Nature Ecology and Evolution, 2022, 6, 1367-1380.	7.8	13
105	Prevention and improvement of clinical management of snakebite in Southern Asian countries: A proposed road map. Toxicon, 2021, 200, 140-152.	1.6	12
106	NATURAL HISTORY OF THE TEXAS HORNED LIZARD, PHRYNOSOMA CORNUTUM (PHRYNOSOMATIDAE), IN SOUTHEASTERN COLORADO. Southwestern Naturalist, 2003, 48, 111-118.	0.1	11
107	Ontogenetic shift in response to prey-derived chemical cues in prairie rattlesnakes Crotalus viridis viridis. Environmental Epigenetics, 2012, 58, 549-555.	1.8	11
108	Venom composition of adult Western Diamondback Rattlesnakes (Crotalus atrox) maintained under controlled diet and environmental conditions shows only minor changes. Toxicon, 2019, 164, 51-60.	1.6	11

#	Article	IF	CITATIONS
109	Physiological demands and signaling associated with snake venom production and storage illustrated by transcriptional analyses of venom glands. Scientific Reports, 2020, 10, 18083.	3.3	11
110	Venomics of the Central American Lyre Snake Trimorphodon quadruplex (Colubridae: Smith, 1941) from Costa Rica. Journal of Proteomics, 2020, 220, 103778.	2.4	11
111	Genomic Adaptations to Salinity Resist Gene Flow in the Evolution of Floridian Watersnakes. Molecular Biology and Evolution, 2021, 38, 745-760.	8.9	11
112	Multi-species comparisons of snakes identify coordinated signalling networks underlying post-feeding intestinal regeneration. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190910.	2.6	10
113	Unveiling toxicological aspects of venom from the Aesculapian False Coral Snake Erythrolamprus aesculapii. Toxicon, 2019, 164, 71-81.	1.6	10
114	Interspecific and intraspecific venom enzymatic variation among cobras (Naja sp. and Ophiophagus) Tj ETQq0 0 108743.	0 rgBT /O 2.6	verlock 10 Tf 9
115	ToxCodAn: a new toxin annotator and guide to venom gland transcriptomics. Briefings in Bioinformatics, $2021, 22, \ldots$	6.5	9
116	Integration of transcriptomic and proteomic approaches for snake venom profiling. Expert Review of Proteomics, 2021, 18, 827-834.	3.0	9
117	Venom production and secretion in reptiles. Journal of Experimental Biology, 2022, 225, .	1.7	9
118	Body Size Variation in the Texas Horned Lizard, Phrynosoma cornutum, from Central Mexico to Colorado. Journal of Herpetology, 2003, 37, 550-553.	0.5	8
119	Assessment of the potential toxicological hazard of the Green Parrot Snake (Leptophis ahaetulla) Tj ETQq $1\ 1\ 0.7$	784314 rgl	BT Overlock
120	Venom Gene Sequence Diversity and Expression Jointly Shape Diet Adaptation in Pitvipers. Molecular Biology and Evolution, 2022, 39, .	8.9	8
121	DNA barcodes from snake venom: a broadly applicable method for extraction of DNA from snake venoms. BioTechniques, 2018, 65, 339-345.	1.8	7
122	Predator-prey interactions and venom composition in a high elevation lizard specialist, Crotalus pricei (Twin-spotted Rattlesnake). Toxicon, 2019, 170, 29-40.	1.6	7
123	Geographic variation in morphology in the Mohave Rattlesnake (Crotalus scutulatus Kennicott 1861) (Serpentes: Viperidae): implications for species boundaries. Zootaxa, 2019, 4683, zootaxa.4683.1.7.	0.5	7
124	<i>Crotalus oreganus concolor</i> : Envenomation Case with VenomÂAnalysis and a Diagnostic Conundrum of Myoneurologic Symptoms. Wilderness and Environmental Medicine, 2020, 31, 220-225.	0.9	7
125	Duvernoy's Gland Transcriptomics of the Plains Black-Headed Snake, Tantilla nigriceps (Squamata,) Tj ETQq1	l 1 0.7843 	14 ₇ gBT/Ove
126	NATURAL HISTORY OF THE MASSASAUGA, SISTRURUS CATENATUS EDWARDSII, IN SOUTHEASTERN COLORADO. Southwestern Naturalist, 2004, 49, 321-326.	0.1	6

#	Article	IF	CITATIONS
127	Intraspecific venom variation of Mexican West Coast Rattlesnakes (Crotalus basiliscus) and its implications for antivenom production. Biochimie, 2022, 192, 111-124.	2.6	6
128	Venoms of Colubrids., 2016,, 51-79.		5
129	First reported case of thrombocytopenia from a Heterodon nasicus envenomation. Toxicon, 2019, 157, 12-17.	1.6	5
130	Venoms of New World Vinesnakes (Oxybelis aeneus and O. fulgidus). Toxicon, 2021, 190, 22-30.	1.6	5
131	Drought, desertification and poverty: AÂgeospatial analysis of snakebite envenoming in the Caatinga biome of Brazil. International Journal of Health Planning and Management, 2021, 36, 1685-1696.	1.7	5
132	Population Genomic Analyses Confirm Male-Biased Mutation Rates in Snakes. Journal of Heredity, 2021, 112, 221-227.	2.4	5
133	De Novo Genome Assembly Highlights the Role of Lineage-Specific Gene Duplications in the Evolution of Venom in Fea's Viper (<i>Azemiops feae</i>). Genome Biology and Evolution, 2022, 14, .	2.5	5
134	Origins, genomic structure and copy number variation of snake venom myotoxins. Toxicon, 2022, 216, 92-106.	1.6	5
135	Report from the First Snake Genomics and Integrative Biology Meeting. Standards in Genomic Sciences, 2012, 7, 150-152.	1.5	4
136	Cysteine-Rich Secretory Proteins in Reptile Venoms. , 2009, , 325-336.		4
137	VenomMaps: Updated species distribution maps and models for New World pitvipers (Viperidae:) Tj ETQq1 1 0.78	34314 rgB 5.3	T /Overlock 1
138	Desert Massasauga Rattlesnakes (<i>Sistrurus catenatus edwardsii</i>) in Southeastern Colorado: Life History, Reproduction, and Communal Hibernation. Journal of Herpetology, 2016, 50, 594-603.	0.5	3
139	Exploring Toxin Evolution: Venom Protein Transcript Sequencing and Transcriptome-Guided High-Throughput Proteomics. Methods in Molecular Biology, 2020, 2068, 97-127.	0.9	3
140	An integrative view of the toxic potential of Conophis lineatus (Dipsadidae: Xenodontinae), a medically relevant rear-fanged snake. Toxicon, 2022, 205, 38-52.	1.6	3
141	Chemosensory response in stunted prairie rattlesnakes Crotalus viridis viridis. Environmental Epigenetics, 2013, 59, 175-179.	1.8	2
142	Observations on the chemosensory responses of the midget faded rattlesnake (Crotalus oreganus) Tj ETQq0 0 0 0 245-250.	rgBT /Ove 0.8	rlock 10 Tf 50 2
143	Evolution of Resistance to Toxins in Prey. Toxinology, 2017, , 47-65.	0.2	2
144	Biochemical characterization of phospholipase A2 (trimorphin) from the venom of the Sonoran Lyre Snake Trimorphodon biscutatus lambda (family Colubridae). Toxicon, 2004, 44, 27-27.	1.6	0

#	Article	IF	CITATIONS
145	Squamate Reptile Genomics and Evolution. , 2016, , 29-49.		0
146	Asymmetrical expression of toxins between the left and right venom glands of an individual prairie rattlesnake (Crotalus viridis viridis). Toxicon, 2020, 186, 105-108.	1.6	0
147	Evolution of Resistance to Toxins in Prey. , 2016, , 1-19.		O
148	Insights on the inhibition properties of <i>Jatromollistatin</i> (a cyclic heptapeptide) against <i>Crotalus adamanteus</i> metalloendopeptidase using molecular docking analysis. Journal of Molecular Recognition, 2022, , e2957.	2.1	0