
Theresa Alenghat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9342798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenetic regulation by gut microbiota. Gut Microbes, 2022, 14, 2022407.	4.3	90
2	Metagenomic analysis of the fecal microbiome in patients with colorectal cancer compared to healthy controls as a function of age Journal of Clinical Oncology, 2022, 40, 3532-3532.	0.8	0
3	Epithelial sensing of microbiota-derived signals. Genes and Immunity, 2021, 22, 237-246.	2.2	9
4	Inflammation-Associated Microbiota Composition Across Domestic Animals. Frontiers in Genetics, 2021, 12, 649599.	1.1	9
5	Commensal segmented filamentous bacteria-derived retinoic acid primes host defense to intestinal infection. Cell Host and Microbe, 2021, 29, 1744-1756.e5.	5.1	40
6	Cell typeâ€specific mechanisms coupling proteaseâ€activated receptorâ€1 to infectious colitis pathogenesis. Journal of Thrombosis and Haemostasis, 2020, 18, 91-103.	1.9	9
7	IL-10–producing Tfh cells accumulate with age and link inflammation with age-related immune suppression. Science Advances, 2020, 6, eabb0806.	4.7	67
8	Microbiota-derived metabolite promotes HDAC3 activity in the gut. Nature, 2020, 586, 108-112.	13.7	132
9	Insulin-like Growth Factor 1 Supports a Pulmonary Niche that Promotes Type 3 Innate Lymphoid Cell Development in Newborn Lungs. Immunity, 2020, 52, 275-294.e9.	6.6	50
10	Microbiota Inhibit Epithelial Pathogen Adherence by Epigenetically Regulating C-Type Lectin Expression. Frontiers in Immunology, 2019, 10, 928.	2.2	20
11	IL-33 Induces Murine Intestinal Goblet Cell Differentiation Indirectly via Innate Lymphoid Cell IL-13 Secretion. Journal of Immunology, 2019, 202, 598-607.	0.4	64
12	Disruption of Epithelial HDAC3 in Intestine Prevents Diet-Induced Obesity in Mice. Gastroenterology, 2018, 155, 501-513.	0.6	64
13	Microbiota-sensitive epigenetic signature predicts inflammation in Crohn's disease. JCI Insight, 2018, 3, .	2.3	54
14	Host–microbiota interactions: epigenomic regulation. Current Opinion in Immunology, 2017, 44, 52-60.	2.4	80
15	Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Science Translational Medicine, 2017, 9, .	5.8	168
16	Epithelial Histone Deacetylase 3 Instructs Intestinal Immunity by Coordinating Local Lymphocyte Activation. Cell Reports, 2017, 19, 1165-1175.	2.9	38
17	Commensal Fungi Recapitulate the Protective Benefits of Intestinal Bacteria. Cell Host and Microbe, 2017, 22, 809-816.e4.	5.1	203
18	Epithelial-intrinsic IKKα expression regulates group 3 innate lymphoid cell responses and antibacterial immunity. Journal of Experimental Medicine, 2015, 212, 1513-1528.	4.2	79

THERESA ALENGHAT

#	Article	IF	CITATIONS
19	Epigenomics and the Microbiota. Toxicologic Pathology, 2015, 43, 101-106.	0.9	30
20	Epigenomic regulation of host–microbiota interactions. Trends in Immunology, 2014, 35, 518-525.	2.9	60
21	Histone deacetylase 3 coordinates commensal-bacteria-dependent intestinal homeostasis. Nature, 2013, 504, 153-157.	13.7	212
22	Resistin-like Molecule α Promotes Pathogenic Th17 Cell Responses and Bacterial-Induced Intestinal Inflammation. Journal of Immunology, 2013, 190, 2292-2300.	0.4	48
23	Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria. Science, 2012, 336, 1321-1325.	6.0	638
24	Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity. Immunity, 2012, 37, 158-170.	6.6	817
25	A Circadian Rhythm Orchestrated by Histone Deacetylase 3 Controls Hepatic Lipid Metabolism. Science, 2011, 331, 1315-1319.	6.0	596
26	Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes and Development, 2011, 25, 2480-2488.	2.7	254
27	Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunology, 2011, 12, 1045-1054.	7.0	1,211
28	Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunology, 2011, 12, 1045-54.	7.0	875
29	Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature, 2008, 456, 997-1000.	13.7	245
30	The N-CoR complex enables chromatin remodeler SNF2H to enhance repression by thyroid hormone receptor. EMBO Journal, 2006, 25, 3966-3974.	3.5	46