
Victor Kostjukov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/934264/publications.pdf Version: 2024-02-01

VICTOR KOSTILIKOV

#	Article	IF	CITATIONS
1	Photoexcitation of oxazine 4 dye in aqueous solution: TD-DFT study. Chemical Physics, 2022, 553, 111399.	1.9	1
2	Coumarin 102 excitation in aqueous media: contributions of vibronic coupling and hydration. New Journal of Chemistry, 2022, 46, 2441-2452.	2.8	1
3	Excitation of rhodamine 800 in aqueous media: a theoretical investigation. Journal of Molecular Modeling, 2022, 28, 52.	1.8	4
4	Excitation of neutral red dye in aqueous media: comparative theoretical analysis of neutral and cationic forms. Journal of Molecular Modeling, 2022, 28, 103.	1.8	1
5	Vibronic absorption spectra and excited states of acridine red dye in aqueous solution: TD-DFT/DFT study. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77, 207-215.	1.5	Ο
6	Coumarin 343 in aqueous solution: theoretical analysis of absorption. Journal of Molecular Modeling, 2022, 28, 126.	1.8	0
7	Acriflavine in aqueous solution: excitation and hydration. Journal of Molecular Modeling, 2022, 28, .	1.8	1
8	The electronic states and vibronic absorption spectrum of berberine in aqueous solution. International Journal of Quantum Chemistry, 2021, 121, e26537.	2.0	5
9	The vibronic absorption spectra and electronic states of acridine orange in aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 249, 119302.	3.9	5
10	The Vibronic Absorption Spectrum and Electronic States of Nile Red in Aqueous Solution. ChemistrySelect, 2021, 6, 1297-1304.	1.5	1
11	The vibronic absorption spectra and electronic states of acridine yellow in aqueous solution. Journal of Molecular Liquids, 2021, 326, 115312.	4.9	7
12	The vibronic absorption spectra and electronic states of proflavine in aqueous solution. Computational and Theoretical Chemistry, 2021, 1197, 113144.	2.5	5
13	<scp>TDâ€ÐFT</scp> absorption spectrum of Azure A in aqueous solution: Vibronic transitions and electronic properties. International Journal of Quantum Chemistry, 2021, 121, e26662.	2.0	1
14	Vibronic absorption spectrum and electronic properties of azure C in aqueous solution: TD-DFT study. Theoretical Chemistry Accounts, 2021, 140, 1.	1.4	2
15	Vibronic absorption spectrum and electronic properties of methylene blue in aqueous solution: TD-DFT study. Journal of Molecular Liquids, 2021, 336, 116369.	4.9	9
16	TD-DFT/DFT study of thionine in aqueous solution: Vibronic absorption spectrum and electronic properties. Optik, 2021, 242, 167156.	2.9	5
17	The vibronic absorption spectrum and electronic properties of Azure B in aqueous solution: TD-DFT/DFT study. Journal of Molecular Graphics and Modelling, 2021, 107, 107964.	2.4	5
18	Excited states of six oxazine 1 conformers in aqueous solution: TD-DFT/DFT study. Journal of Molecular Liquids, 2021, 341, 117456.	4.9	1

VICTOR KOSTJUKOV

#	Article	IF	CITATIONS
19	Photoexcitation of methylene green dye in aqueous solution: TD-DFT study. Chemical Physics Letters, 2021, 785, 139152.	2.6	2
20	Photoexcitation of oxazine 170 dye in aqueous solution: TD-DFT study. Journal of Molecular Modeling, 2021, 27, 311.	1.8	2
21	Theoretical analysis of lactone and carboxylate forms of camptothecin in aqueous solution: Electronic states, absorption spectra, and hydration. Journal of Molecular Liquids, 2021, 344, 117804.	4.9	8
22	Photoexcitation of cresyl violet dye in aqueous solution: TD-DFT study. Theoretical Chemistry Accounts, 2021, 140, 1.	1.4	3
23	Single-walled carbon nanotubes loaded hydroxyapatite–alginate beads with enhanced mechanical properties and sustained drug release ability. Progress in Biomaterials, 2020, 9, 1-14.	4.5	14
24	The energetics of small molecules binding with nucleic acids. Journal of Chemical Thermodynamics, 2019, 139, 105887.	2.0	1
25	Interaction of pseudoephedrine and azithromycin with losartan: Spectroscopic, dissolution and permeation studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 221, 117194.	3.9	2
26	Comparative Analysis of the Antineoplastic Activity of C60 Fullerene with 5-Fluorouracil and Pyrrole Derivative In Vivo. Nanoscale Research Letters, 2017, 12, 8.	5.7	28
27	Molecular Modeling-Based Energy Analysis of Dimeric Binding of Ligands to the Minor DNA Groove. Biophysics (Russian Federation), 2017, 62, 876-884.	0.7	0
28	A nanocomplex of C ₆₀ fullerene with cisplatin: design, characterization and toxicity. Beilstein Journal of Nanotechnology, 2017, 8, 1494-1501.	2.8	41
29	Study of the complexation between Landomycin A and C60 fullerene in aqueous solution. RSC Advances, 2016, 6, 81231-81236.	3.6	12
30	Optimal experiment design: Link between the concentration and the accuracy of estimation of aggregation parameters. Chemical Physics Letters, 2016, 664, 133-137.	2.6	0
31	General features of the energetics of complex formation between ligand and nucleic acids. Biophysics (Russian Federation), 2014, 59, 546-551.	0.7	2
32	Energy analysis of non-covalent ligand binding to nucleic acids: Present and future. Biophysics (Russian Federation), 2014, 59, 552-555.	0.7	2
33	Evidence of entropically driven C60 fullerene aggregation in aqueous solution. Journal of Chemical Physics, 2014, 140, 104909.	3.0	25
34	Complexation of aromatic drugs with single-walled carbon nanotubes. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	14
35	Spectroscopic Study of Proflavine Adsorption on the Carbon Nanotube Surface. Applied Spectroscopy, 2014, 68, 232-237.	2.2	3
36	Dimerization Energetics of DNA Minor Groove Binders. Ukrainian Journal of Physics, 2014, 59, 461-472.	0.2	3

VICTOR KOSTJUKOV

#	Article	IF	CITATIONS
37	Indistinguishability of the models of molecular self-assembly. Supramolecular Chemistry, 2013, 25, 199-203.	1.2	15
38	C60 fullerene aggregation in aqueous solution. Physical Chemistry Chemical Physics, 2013, 15, 9351.	2.8	75
39	Relation between the change in DNA elasticity on ligand binding and the binding energetics. Physical Review E, 2012, 86, 031919.	2.1	6
40	Energetics of ligand binding to the DNA minor groove. Physical Chemistry Chemical Physics, 2012, 14, 5588.	2.8	21
41	A revised treatment of the non-electrostatic contribution to the solvation free energy of DNA-binding ligands. Journal of Molecular Liquids, 2011, 163, 178-180.	4.9	4
42	Calculation of the electrostatic charges and energies for intercalation of aromatic drug molecules with DNA. International Journal of Quantum Chemistry, 2011, 111, 711-721.	2.0	17
43	Additional stabilization of hetero-complexes of aromatic molecules: H-bonds or charge-transfer?. Journal of Molecular Structure, 2011, 985, 403-406.	3.6	4
44	Parsing of the free energy of aromatic–aromatic stacking interactions in solution. Journal of Chemical Thermodynamics, 2011, 43, 1424-1434.	2.0	32
45	Hexamer oligonucleotide topology and assembly under solution phase NMR and theoretical modeling scrutiny. Biopolymers, 2010, 93, 1023-1038.	2.4	5
46	Relation between structure and enthalpy for stacking interactions of aromatic molecules. Molecular Physics, 2010, 108, 1941-1947.	1.7	8
47	Hydration change on complexation of aromatic ligands with DNA: molecular dynamics simulations. Biopolymers and Cell, 2010, 26, 36-44.	0.4	8
48	Partition of thermodynamic energies of drug–DNA complexation. Biopolymers, 2009, 91, 773-790.	2.4	32
49	Calculation of the thermodynamic potentials of changes in translational, rotational, and vibrational degrees of freedom in the dimerization of aromatic molecules. Russian Journal of Physical Chemistry B, 2009, 3, 707-712.	1.3	2
50	Hydrophobic contribution to the free energy of complexation of aromatic ligands with DNA. Biopolymers and Cell, 2009, 25, 133-141.	0.4	6
51	Electrostatic contribution to the energy of binding of aromatic ligands with DNA. Biopolymers, 2008, 89, 680-690.	2.4	23
52	On the origin of the decrease in stability of the DNA hairpin d(GCGAAGC) on complexation with aromatic drugs. Biophysical Chemistry, 2007, 129, 56-59.	2.8	7
53	Investigation of the complexation of the anti-cancer drug novantrone with the hairpin structure of the deoxyheptanucleotide 5′-d(GpCpGpApApGpC). Journal of Molecular Structure, 2007, 843, 78-86.	3.6	8
54	Contributions to the knowledge of tetrastichine wasps (Hymenoptera, Eulophidae, Tetrastichinae) of the Middle Volga Region. Entomological Review, 2007, 87, 1180-1192.	0.3	11

#	Article	IF	CITATIONS
55	Structural characteristics of intercalation complex of deoxyheptanucleotide hairpin d(GCGAAGC) with anthracycline antibiotic daunomycin. Biopolymers and Cell, 2006, 22, 339-349.	0.4	0
56	Contributions of conformations, vibronic coupling, and hydration to photoexcitation of coumarin 334 in aqueous solution. Chemical Papers, 0, , .	2.2	0