
Richard W Vachet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9342627/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm:  Core and Monolayer Properties as a Function of Core Size. Langmuir, 1998, 14, 17-30.	1.6	1,750
2	Effect of Surface Charge on the Uptake and Distribution of Gold Nanoparticles in Four Plant Species. Environmental Science & Technology, 2012, 46, 12391-12398.	4.6	332
3	The basics of mass spectrometry in the twenty-first century. Nature Reviews Drug Discovery, 2003, 2, 140-150.	21.5	303
4	Probing protein structure by amino acidâ€specific covalent labeling and mass spectrometry. Mass Spectrometry Reviews, 2009, 28, 785-815.	2.8	300
5	Surface Charge Controls the Suborgan Biodistributions of Gold Nanoparticles. ACS Nano, 2016, 10, 5536-5542.	7.3	185
6	Molecular analysis of chromium and cobalt-related toxicity. Scientific Reports, 2014, 4, 5729.	1.6	159
7	Multiplexed Screening of Cellular Uptake of Gold Nanoparticles Using Laser Desorption/Ionization Mass Spectrometry. Journal of the American Chemical Society, 2008, 130, 14139-14143.	6.6	126
8	Interaction between Oxide Nanoparticles and Biomolecules of the Bacterial Cell Envelope As Examined by Infrared Spectroscopy. Langmuir, 2010, 26, 18071-18077.	1.6	122
9	Stability of quantum dots in live cells. Nature Chemistry, 2011, 3, 963-968.	6.6	121
10	Novel Peptide Dissociation:Â Gas-Phase Intramolecular Rearrangement of Internal Amino Acid Residues. Journal of the American Chemical Society, 1997, 119, 5481-5488.	6.6	115
11	Surface Properties Dictate Uptake, Distribution, Excretion, and Toxicity of Nanoparticles in Fish. Small, 2010, 6, 2261-2265.	5.2	113
12	Antioxidant Mechanisms of Enzymatic Hydrolysates of β-Lactoglobulin in Food Lipid Dispersions. Journal of Agricultural and Food Chemistry, 2006, 54, 9565-9572.	2.4	111
13	Protein Surface Mapping Using Diethylpyrocarbonate with Mass Spectrometric Detection. Analytical Chemistry, 2008, 80, 2895-2904.	3.2	105
14	Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions. Methods, 2018, 144, 79-93.	1.9	81
15	Mixed Monolayer-Protected Gold Nanoclusters as Selective Peptide Extraction Agents for MALDI-MS Analysis. Analytical Chemistry, 2006, 78, 5491-5496.	3.2	79
16	Multiplexed Imaging of Nanoparticles in Tissues Using Laser Desorption/Ionization Mass Spectrometry. Journal of the American Chemical Society, 2013, 135, 12564-12567.	6.6	78
17	Ion-molecule reactions in a quadrupole ion trap as a probe of the gas-phase structure of metal complexes. Journal of Mass Spectrometry, 1998, 33, 1209-1225.	0.7	75
18	Intracellular Activation of Bioorthogonal Nanozymes through Endosomal Proteolysis of the Protein Corona. ACS Nano, 2020, 14, 4767-4773.	7.3	74

#	Article	IF	CITATIONS
19	Development of a Methodology Based on Metal-Catalyzed Oxidation Reactions and Mass Spectrometry To Determine the Metal Binding Sites in Copper Metalloproteins. Analytical Chemistry, 2003, 75, 1164-1172.	3.2	71
20	The Interplay of Monolayer Structure and Serum Protein Interactions on the Cellular Uptake of Gold Nanoparticles. Small, 2012, 8, 2659-2663.	5.2	71
21	Structure of the Preamyloid Dimer of \hat{l}^2 -2-Microglobulin from Covalent Labeling and Mass Spectrometry. Biochemistry, 2010, 49, 1522-1532.	1.2	66
22	Origin of product ions in the MS/MS spectra of peptides in a quadrupole ion trap. Journal of the American Society for Mass Spectrometry, 1998, 9, 341-344.	1.2	65
23	Transition metal binding to cod otolith proteins. Journal of Experimental Marine Biology and Ecology, 2006, 329, 135-143.	0.7	64
24	Laser desorption/ionization mass spectrometry analysis of monolayer-protected gold nanoparticles. Analytical and Bioanalytical Chemistry, 2010, 396, 1025-1035.	1.9	62
25	Thermally Gated Bio-orthogonal Nanozymes with Supramolecularly Confined Porphyrin Catalysts for Antimicrobial Uses. CheM, 2020, 6, 1113-1124.	5.8	62
26	Secondary Interactions Affecting the Dissociation Patterns of Arginine-Containing Peptide Ions. Journal of the American Chemical Society, 1996, 118, 6252-6256.	6.6	61
27	Transition Metalâ^'Peptide Binding Studied by Metal-Catalyzed Oxidation Reactions and Mass Spectrometry. Analytical Chemistry, 2006, 78, 2432-2438.	3.2	60
28	Gas-phase oon-molecule reactions of transition metal complexes: The effect of different coordination spheres on complex reactivity. Journal of the American Society for Mass Spectrometry, 2002, 13, 813-825.	1.2	57
29	Metal-catalyzed oxidation reactions and mass spectrometry: The roles of ascorbate and different oxidizing agents in determining Cu–protein-binding sites. Analytical Biochemistry, 2005, 341, 122-130.	1.1	56
30	A comparison of the gas, solution, and solid state coordination environments for the copper(II) complexes of a series of aminopyridine ligands of varying coordination number. Inorganica Chimica Acta, 2003, 343, 119-132.	1.2	55
31	Engineered nanoparticle surfaces for improved mass spectrometric analyses. Analyst, The, 2009, 134, 2183.	1.7	52
32	Graphene-loaded nanofiber-modified electrodes for the ultrasensitive determination of dopamine. Analytica Chimica Acta, 2013, 804, 84-91.	2.6	52
33	Exploring Salt Bridge Structures of Gas-Phase Protein Ions using Multiple Stages of Electron Transfer and Collision Induced Dissociation. Journal of the American Society for Mass Spectrometry, 2014, 25, 604-613.	1.2	51
34	Improved sequencing of oxidized cysteine and methionine containing peptides using electron transfer dissociation. Journal of the American Society for Mass Spectrometry, 2007, 18, 1499-1506.	1.2	50
35	Gas-phase ion–molecule reactions of divalent metal complex ions: Toward coordination structure analysis by mass spectrometry and some intrinsic coordination chemistry along the way. International Journal of Mass Spectrometry, 2005, 244, 109-124.	0.7	49
36	Gas, solution, and solid state coordination environments for the nickel(II) complexes of a series of aminopyridine ligands of varying coordination number. Inorganica Chimica Acta, 2000, 297, 79-87.	1.2	48

#	Article	IF	CITATIONS
37	Structural Insights into the Pre-Amyloid Tetramer of β-2-Microglobulin from Covalent Labeling and Mass Spectrometry. Biochemistry, 2011, 50, 6711-6722.	1.2	48
38	Quadrupole ion trap studies of the structure and reactivity of transition metal ion pair complexes. , 2000, 35, 311-320.		46
39	Using Mass Spectrometry To Study Copperâ^'Protein Binding under Native and Non-Native Conditions:Â β-2-Microglobulin. Analytical Chemistry, 2004, 76, 3498-3504.	3.2	45
40	Selective Peptide Binding Using Facially Amphiphilic Dendrimers. Journal of the American Chemical Society, 2008, 130, 11156-11163.	6.6	45
41	Copper Binding to β-2-Microglobulin and Its Pre-Amyloid Oligomers. Biochemistry, 2009, 48, 9871-9881.	1.2	45
42	The use of static pressures of heavy gases within a quadrupole ion trap. Journal of the American Society for Mass Spectrometry, 2003, 14, 1099-1109.	1.2	42
43	Laser desorption ionization mass spectrometric imaging of mass barcoded gold nanoparticles for security applications. Chemical Communications, 2012, 48, 4543.	2.2	42
44	Determination of the Intracellular Stability of Gold Nanoparticle Monolayers Using Mass Spectrometry. Analytical Chemistry, 2012, 84, 4321-4326.	3.2	40
45	Effects of heavy gases on the tandem mass spectra of peptide ions in the quadrupole ion trap. Journal of the American Society for Mass Spectrometry, 1996, 7, 1194-1202.	1.2	38
46	Cu(II) organizes βâ€2â€microglobulin oligomers but is released upon amyloid formation. Protein Science, 2008, 17, 748-759.	3.1	38
47	Covalent Labeling with Diethylpyrocarbonate: Sensitive to the Residue Microenvironment, Providing Improved Analysis of Protein Higher Order Structure by Mass Spectrometry. Analytical Chemistry, 2019, 91, 8516-8523.	3.2	38
48	Effect of Coordination Geometry on the Gas-Phase Reactivity of Four-Coordinate Divalent Metal Ion Complexes. Journal of Physical Chemistry A, 2004, 108, 1757-1763.	1.1	37
49	Dual-Mode Mass Spectrometric Imaging for Determination of <i>in Vivo</i> Stability of Nanoparticle Monolayers. ACS Nano, 2017, 11, 7424-7430.	7.3	36
50	Using metal-catalyzed oxidation reactions and mass spectrometry to identify amino acid residues within 10 Ã of the metal in Cu-binding proteins. Journal of the American Society for Mass Spectrometry, 2006, 17, 1552-1559.	1.2	35
51	Increased Protein Structural Resolution from Diethylpyrocarbonate-based Covalent Labeling and Mass Spectrometric Detection. Journal of the American Society for Mass Spectrometry, 2012, 23, 708-717.	1.2	35
52	The Role of Surface Functionality in Nanoparticle Exocytosis. Advanced Healthcare Materials, 2014, 3, 1200-1202.	3.9	35
53	Investigating Therapeutic Protein Structure with Diethylpyrocarbonate Labeling and Mass Spectrometry. Analytical Chemistry, 2015, 87, 10627-10634.	3.2	35
54	Quantitative imaging of 2 nm monolayer-protected gold nanoparticle distributions in tissues using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS). Analyst, The, 2016, 141, 2418-2425.	1.7	35

#	Article	IF	CITATIONS
55	Constraints on Anaerobic Respiration in the Hyperthermophilic Archaea Pyrobaculum islandicum and Pyrobaculum aerophilum. Applied and Environmental Microbiology, 2008, 74, 396-402.	1.4	34
56	Diethylpyrocarbonate Labeling for the Structural Analysis of Proteins: Label Scrambling in Solution and How to Avoid It. Journal of the American Society for Mass Spectrometry, 2012, 23, 899-907.	1.2	34
57	Using Covalent Labeling and Mass Spectrometry To Study Protein Binding Sites of Amyloid Inhibiting Molecules. Analytical Chemistry, 2017, 89, 11583-11591.	3.2	34
58	Quantitative Differentiation of Cell Surface-Bound and Internalized Cationic Gold Nanoparticles Using Mass Spectrometry. ACS Nano, 2016, 10, 6731-6736.	7.3	33
59	Enhanced Laser Desorption/Ionization Mass Spectrometric Detection of Biomolecules Using Gold Nanoparticles, Matrix, and the Coffee Ring Effect. Analytical Chemistry, 2017, 89, 3009-3014.	3.2	32
60	In Vivo Editing of Macrophages through Systemic Delivery of CRISPRâ€Cas9â€Ribonucleoproteinâ€Nanoparticle Nanoassemblies. Advanced Therapeutics, 2019, 2, 1900041.	1.6	32
61	Inkjet-Printed Gold Nanoparticle Surfaces for the Detection of Low Molecular Weight Biomolecules by Laser Desorption/Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2015, 26, 1931-1937.	1.2	31
62	Polymeric Inverse Micelles as Selective Peptide Extraction Agents for MALDI-MS Analysis. Analytical Chemistry, 2007, 79, 7124-7130.	3.2	30
63	Engineering of a 129-residue tripod protein by chemoselective ligation of proline-II helices. Tetrahedron, 1995, 51, 9859-9872.	1.0	29
64	Using Microwave-Assisted Metal-Catalyzed Oxidation Reactions and Mass Spectrometry To Increase the Rate at Which the Copper-Binding Sites of a Protein Are Determined. Analytical Chemistry, 2005, 77, 4649-4653.	3.2	29
65	A programmable chemical switch based on triggerable Michael acceptors. Chemical Science, 2020, 11, 2103-2111.	3.7	29
66	The effect of histidine oxidation on the dissociation patterns of peptide ions. Journal of the American Society for Mass Spectrometry, 2007, 18, 553-562.	1.2	27
67	Matrix Metalloproteinase-9-Responsive Nanogels for Proximal Surface Conversion and Activated Cellular Uptake. Biomacromolecules, 2018, 19, 860-871.	2.6	27
68	Rod-shape theranostic nanoparticles facilitate antiretroviral drug biodistribution and activity in human immunodeficiency virus susceptible cells and tissues. Theranostics, 2020, 10, 630-656.	4.6	27
69	Tandem mass spectrometry of Cu(II) complexes: the effects of ligand donor group on dissociation. Journal of Mass Spectrometry, 2003, 38, 333-342.	0.7	26
70	Characterization of Cu(II)-binding ligands from the Chesapeake Bay using high-performance size-exclusion chromatography and mass spectrometry. Marine Chemistry, 2003, 82, 31-45.	0.9	26
71	Correlation of Kinetic Energy Losses in High-Energy Collision-Induced Dissociation with Observed Peptide Product Ions. Analytical Chemistry, 1996, 68, 522-526.	3.2	25
72	Boundary-Activated Dissociation of Peptide lons in a Quadrupole Ion Trap. Analytical Chemistry, 1998, 70, 340-346.	3.2	25

#	Article	IF	CITATIONS
73	Correct identification of oxidized histidine residues using electronâ€transfer dissociation. Journal of Mass Spectrometry, 2009, 44, 755-762.	0.7	25
74	Characterization of surface ligands on functionalized magnetic nanoparticles using laser desorption/ionization mass spectrometry (LDI-MS). Nanoscale, 2013, 5, 5063.	2.8	25
75	Supramolecular Assemblies for Transporting Proteins Across an Immiscible Solvent Interface. Journal of the American Chemical Society, 2018, 140, 2421-2425.	6.6	25
76	A comparison of the gas, solution, and solid state coordination environments for the Cu(II) complexes of a series of linear aminopyridine ligands with varying ratios of 5- and 6-membered chelate rings. Inorganica Chimica Acta, 2004, 357, 1141-1151.	1.2	24
77	Multiplexed MS/MS in a Quadrupole Ion Trap Mass Spectrometer. Analytical Chemistry, 2004, 76, 7346-7353.	3.2	24
78	A layer-by-layer assembled MoS ₂ thin film as an efficient platform for laser desorption/ionization mass spectrometry analysis of small molecules. Nanoscale, 2017, 9, 10854-10860.	2.8	24
79	Synergistic Structural Information from Covalent Labeling and Hydrogen–Deuterium Exchange Mass Spectrometry for Protein–Ligand Interactions. Analytical Chemistry, 2019, 91, 15248-15254.	3.2	22
80	Selective Enrichment and Analysis of Acidic Peptides and Proteins Using Polymeric Reverse Micelles and MALDI-MS. Analytical Chemistry, 2010, 82, 8686-8691.	3.2	21
81	Covalent labeling and mass spectrometry reveal subtle higher order structural changes for antibody therapeutics. MAbs, 2019, 11, 463-476.	2.6	21
82	Covalent Labeling with Isotopically Encoded Reagents for Faster Structural Analysis of Proteins by Mass Spectrometry. Analytical Chemistry, 2013, 85, 9664-9670.	3.2	20
83	Unique Effect of Cu(II) in the Metal-Induced Amyloid Formation of β-2-Microglobulin. Biochemistry, 2014, 53, 1263-1274.	1.2	20
84	Utilization of Hydrophobic Microenvironment Sensitivity in Diethylpyrocarbonate Labeling for Protein Structure Prediction. Analytical Chemistry, 2021, 93, 8188-8195.	3.2	20
85	The utility of ion–molecule reactions in a quadrupole ion trap mass spectrometer for analyzing metal complex coordination structure. Analytica Chimica Acta, 2003, 496, 233-248.	2.6	19
86	Mass Spectrometric Detection of Nanoparticle Host–Guest Interactions in Cells. Analytical Chemistry, 2014, 86, 6710-6714.	3.2	19
87	Electrostatic Control of Peptide Side-Chain Reactivity Using Amphiphilic Homopolymer-Based Supramolecular Assemblies. Journal of the American Chemical Society, 2013, 135, 14179-14188.	6.6	18
88	Self-assembly of random co-polymers for selective binding and detection of peptides. Polymer Chemistry, 2018, 9, 1066-1071.	1.9	18
89	A comparison of the gas, solution, and solid state coordination environments for the Ni(II) complexes of a series of linear penta- and hexadentate aminopyridine ligands with accessible Ni(III) oxidation states. Inorganica Chimica Acta, 2004, 357, 51-58.	1.2	17
90	Are Gas-Phase Reactions of Five-Coordinate Divalent Metal Ion Complexes Affected by Coordination Geometry?. Inorganic Chemistry, 2004, 43, 2745-2753.	1.9	17

#	Article	IF	CITATIONS
91	Sequential nucleophilic "click―reactions for functional amphiphilic homopolymers. Polymer Chemistry, 2019, 10, 187-193.	1.9	17
92	Reconstruction, analysis, and segmentation of LA-ICP-MS imaging data using Python for the identification of sub-organ regions in tissues. Analyst, The, 2020, 145, 3705-3712.	1.7	17
93	Gas-phase reactions of divalent Ni complex ions with acetonitrile: Chelate ring size, inductive, and steric effects. Journal of the American Society for Mass Spectrometry, 2004, 15, 1128-1135.	1.2	16
94	Kinetics of Protein Complex Dissociation Studied by Hydrogen/Deuterium Exchange and Mass Spectrometry. Analytical Chemistry, 2015, 87, 11777-11783.	3.2	16
95	Amphiphilic nanoassemblies for the detection of peptides and proteins using fluorescence and mass spectrometry. Analyst, The, 2009, 134, 635.	1.7	15
96	Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry Signal Enhancement of Peptides after Selective Extraction with Polymeric Reverse Micelles. Analytical Chemistry, 2010, 82, 3686-3691.	3.2	15
97	Increased β-Sheet Dynamics and D–E Loop Repositioning Are Necessary for Cu(II)-Induced Amyloid Formation by β-2-Microglobulin. Biochemistry, 2017, 56, 1095-1104.	1.2	15
98	Gradient and Patterned Protein Films Stabilized via Nanoimprint Lithography for Engineered Interactions with Cells. ACS Applied Materials & Interfaces, 2017, 9, 42-46.	4.0	15
99	Enhanced Laser Desorption/Ionization Mass Spectrometric Detection of Gold Nanoparticles in Biological Samples Using the Synergy between Added Matrix and the Gold Core. Analytical Chemistry, 2015, 87, 12145-12150.	3.2	14
100	Small molecule-mediated inhibition of β-2-microglobulin-based amyloid fibril formation. Journal of Biological Chemistry, 2017, 292, 10630-10638.	1.6	14
101	Dual Mass Spectrometric Tissue Imaging of Nanocarrier Distributions and Their Biochemical Effects. Analytical Chemistry, 2020, 92, 2011-2018.	3.2	14
102	Higher-Order Structure Influences the Kinetics of Diethylpyrocarbonate Covalent Labeling of Proteins. Journal of the American Society for Mass Spectrometry, 2020, 31, 658-665.	1.2	14
103	Generating Peptide Titration-Type Curves Using Polymeric Reverse Micelles As Selective Extraction Agents along with Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry Detection. Analytical Chemistry, 2009, 81, 5046-5053.	3.2	13
104	Label Scrambling During CID of Covalently Labeled Peptide Ions. Journal of the American Society for Mass Spectrometry, 2014, 25, 1739-1746.	1.2	13
105	Gas-phase protein salt bridge stabilities from collisional activation and electron transfer dissociation. International Journal of Mass Spectrometry, 2017, 420, 51-56.	0.7	13
106	Covalent Labeling/Mass Spectrometry of Monoclonal Antibodies with Diethylpyrocarbonate: Reaction Kinetics for Ensuring Protein Structural Integrity. Journal of the American Society for Mass Spectrometry, 2020, 31, 1223-1232.	1.2	13
107	Identifying Zn-Bound Histidine Residues in Metalloproteins Using Hydrogen–Deuterium Exchange Mass Spectrometry. Analytical Chemistry, 2014, 86, 766-773.	3.2	12
108	Multiplexed MS/MS in a Miniature Rectilinear Ion Trap. Journal of the American Society for Mass Spectrometry, 2011, 22, 683-688.	1.2	10

#	Article	IF	CITATIONS
109	Using Metal Complex Ion-Molecule Reactions in a Miniature Rectilinear Ion Trap Mass Spectrometer to Detect Chemical Warfare Agents. Journal of the American Society for Mass Spectrometry, 2013, 24, 917-925.	1.2	10
110	MEMBRANE PROTEIN STRUCTURES AND INTERACTIONS FROM COVALENT LABELING COUPLED WITH MASS SPECTROMETRY. Mass Spectrometry Reviews, 2022, 41, 51-69.	2.8	10
111	Complementary Structural Information for Stressed Antibodies from Hydrogen–Deuterium Exchange and Covalent Labeling Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2021, 32, 1237-1248.	1.2	10
112	Enhanced and Selective MALDI-MS Detection of Peptides via the Nanomaterial-Dependent Coffee Ring Effect. Journal of the American Society for Mass Spectrometry, 2021, 32, 1780-1788.	1.2	10
113	Application of external customized waveforms to a commercial quadrupole ion trap. Journal of the American Society for Mass Spectrometry, 1999, 10, 355-359.	1.2	9
114	Effect of Al2O3 nanoparticles on bacterial membrane amphiphilic biomolecules. Colloids and Surfaces B: Biointerfaces, 2013, 102, 292-299.	2.5	9
115	Protein–Ligand Affinity Determinations Using Covalent Labeling-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 1544-1553.	1.2	9
116	Epitope Mapping with Diethylpyrocarbonate Covalent Labeling-Mass Spectrometry. Analytical Chemistry, 2022, 94, 1052-1059.	3.2	9
117	New method to study the effects of peptide sequence on the dissociation energetics of peptide ions. Journal of the American Society for Mass Spectrometry, 1998, 9, 175-177.	1.2	8
118	Influence of Charge Density on Host–Guest Interactions within Amphiphilic Polymer Assemblies in Apolar Media. Macromolecules, 2017, 50, 9734-9741.	2.2	8
119	Molecular Features Influencing the Release of Peptides from Amphiphilic Polymeric Reverse Micelles. Langmuir, 2018, 34, 4595-4602.	1.6	8
120	Lipogels for Encapsulation of Hydrophilic Proteins and Hydrophobic Small Molecules. Biomacromolecules, 2018, 19, 132-140.	2.6	8
121	Matrix-Incorporated Polydopamine Layer as a Simple, Efficient, and Universal Coating for Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis. ACS Applied Materials & Interfaces, 2018, 10, 36361-36368.	4.0	8
122	Accounting for Neighboring Residue Hydrophobicity in Diethylpyrocarbonate Labeling Mass Spectrometry Improves Rosetta Protein Structure Prediction. Journal of the American Society for Mass Spectrometry, 2022, 33, 584-591.	1.2	8
123	Polymer-mediated ternary supramolecular interactions for sensitive detection of peptides. Analyst, The, 2017, 142, 118-122.	1.7	7
124	Complementary Structural Information for Antibody–Antigen Complexes from Hydrogen–Deuterium Exchange and Covalent Labeling Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2022, 33, 1303-1314.	1.2	7
125	Strategy for Pulsed Ionization Methods on a Sector Mass Spectrometer. Analytical Chemistry, 1996, 68, 845-849.	3.2	6
126	STEP (Statistical Test of Equivalent Pathways) Analysis:  A Mass Spectrometric Method for Carbohydrates and Peptides. Analytical Chemistry, 2005, 77, 5886-5893.	3.2	6

#	Article	IF	CITATIONS
127	More than a picture. Nature Nanotechnology, 2015, 10, 103-104.	15.6	6
128	Improved mass spectrometric detection of acidic peptides by variations in the functional group p <i>K</i> _a values of reverse micelle extraction agents. Analyst, The, 2018, 143, 1434-1443.	1.7	6
129	Supramolecular Polymeric Assemblies for the Selective Depletion of Abundant Acidic Proteins in Serum. ACS Applied Materials & amp; Interfaces, 2018, 10, 40443-40451.	4.0	6
130	Efficient enrichment of glycopeptides by supramolecular nanoassemblies that use proximity-assisted covalent binding. Analyst, The, 2019, 144, 6321-6326.	1.7	6
131	Structural Heterogeneity in the Preamyloid Oligomers of β-2-Microglobulin. Journal of Molecular Biology, 2020, 432, 396-409.	2.0	6
132	Polymeric nanoassemblies for enrichment and detection of peptides and proteins in human breast milk. Analytical and Bioanalytical Chemistry, 2020, 412, 1027-1035.	1.9	6
133	The Cleavage Profile of Protein Substrates by ClpXP Reveals Deliberate Starts and Pauses. Biochemistry, 2020, 59, 4294-4301.	1.2	6
134	Covalent Labeling with an α,β-Unsaturated Carbonyl Scaffold for Studying Protein Structure and Interactions by Mass Spectrometry. Analytical Chemistry, 2020, 92, 6637-6644.	3.2	6
135	Nanodelivery vehicles induce remote biochemical changes in vivo. Nanoscale, 2021, 13, 12623-12633.	2.8	6
136	LA-ICP-MS and MALDI-MS image registration for correlating nanomaterial biodistributions and their biochemical effects. Analyst, The, 2021, 146, 7720-7729.	1.7	6
137	Facile synthesis of cationic gold nanoparticles with controlled size and surface plasmon resonance. RSC Advances, 2016, 6, 92007-92010.	1.7	5
138	Altering the Peptide Binding Selectivity of Polymeric Reverse Micelle Assemblies via Metal Ion Loading. Langmuir, 2017, 33, 14004-14010.	1.6	5
139	Measuring the Energy Barrier of the Structural Change That Initiates Amyloid Formation. Analytical Chemistry, 2020, 92, 4731-4735.	3.2	4
140	Epigallocatechin-3-gallate Inhibits Cu(II)-Induced β-2-Microglobulin Amyloid Formation by Binding to the Edge of Its β-Sheets. Biochemistry, 2020, 59, 1093-1103.	1.2	4
141	Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry. Analytical Chemistry, 2022, 94, 1003-1010.	3.2	4
142	Multiplexed Analysis of the Cellular Uptake of Polymeric Nanocarriers. Analytical Chemistry, 2022, 94, 7901-7908.	3.2	3
143	Disruption of the open conductance in the β-tongue mutants of Cytolysin A. Scientific Reports, 2018, 8, 3796.	1.6	2
144	Preliminary Capillary Flow Experiments with Amyloid-β, Possible Needle and Capillary Aβ Adsorption, and a Proposal for Drug Evaluation Under Shear Conditions. Journal of Alzheimer's Disease, 2019, 72, 751-760.	1.2	2

#	Article	IF	CITATIONS
145	Parent ion resolution in linked scans for dissociations occurring in the first field-free region of sector mass spectrometers. Journal of the American Society for Mass Spectrometry, 1997, 8, 545-553.	1.2	1
146	Prediction of artifact peak intensity in linked scans for dissociations occurring in the first field-free region of sector mass spectrometers. Journal of the American Society for Mass Spectrometry, 1997, 8, 554-560.	1.2	1
147	Covalent Labeling with Diethylpyrocarbonate for Studying Protein Higher-Order Structure by Mass Spectrometry. Journal of Visualized Experiments, 2021, , .	0.2	1
148	26th ASMS Sanibel Conference on Mass Spectrometry - Ion Activation: Fundamentals, Applications and New Frontiers. Journal of the American Society for Mass Spectrometry, 2014, 25, 1307-1309.	1.2	0
149	Methods Covalent Labeling and Chemical Cross-Linking Coupled With Mass Spectrometry for Studying Protein Amyloid Formation. , 2021, , 742-756.		Ο
150	Covalent Labeling-Mass Spectrometry Provides a Molecular Understanding of Noncovalent Polymer–Protein Complexation. ACS Biomaterials Science and Engineering, 2022, 8, 2489-2499.	2.6	0