
Miklos Sahin-Toth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9342614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chronic progression of cerulein-induced acute pancreatitis in trypsinogen mutant mice. Pancreatology, 2022, 22, 248-257.	0.5	4
2	Misfolding-induced chronic pancreatitis in CPA1 N256K mutant mice is unaffected by global deletion of Ddit3/Chop. Scientific Reports, 2022, 12, 6357.	1.6	5
3	Variants in the pancreatic CUB and zona pellucida-like domains 1 (CUZD1) gene in early-onset chronic pancreatitis - A possible new susceptibility gene. Pancreatology, 2022, 22, 564-571.	0.5	4
4	Modelling chronic pancreatitis as a complex genetic disease in mice. Gut, 2022, , gutjnl-2022-327601.	6.1	1
5	Risk of chronic pancreatitis in carriers of loss-of-function CTRC variants: A meta-analysis. PLoS ONE, 2022, 17, e0268859.	1.1	3
6	Rate of Autoactivation Determines Pancreatitis Phenotype in Trypsinogen Mutant Mice. Gastroenterology, 2022, 163, 761-763.	0.6	6
7	Loss-of-function variant in chymotrypsin like elastase 3B (CELA3B) is associated with non-alcoholic chronic pancreatitis. Pancreatology, 2022, 22, 713-718.	0.5	8
8	Hereditary Pancreatitis—25 Years of an Evolving Paradigm. Pancreas, 2022, 51, 297-301.	0.5	1
9	Defective binding of SPINK1 variants is an uncommon mechanism for impaired trypsin inhibition in chronic pancreatitis. Journal of Biological Chemistry, 2021, 296, 100343.	1.6	15
10	Mouse model suggests limited role for human mesotrypsin in pancreatitis. Pancreatology, 2021, 21, 342-352.	0.5	3
11	Sentinel Acute Pancreatitis Event Increases Severity of Subsequent Episodes in Mice. Gastroenterology, 2021, 161, 1692-1694.	0.6	7
12	Common calcium-sensing receptor (CASR) gene variants do not modify risk for chronic pancreatitis in a Hungarian cohort. Pancreatology, 2021, 21, 1305-1310.	0.5	5
13	Evolutionary expansion of polyaspartate motif in the activation peptide of mouse cationic trypsinogen limits autoactivation and protects against pancreatitis. American Journal of Physiology - Renal Physiology, 2021, 321, G719-G734.	1.6	2
14	Mutation That Promotes Activation of Trypsinogen Increases Severity of Secretagogue-Induced Pancreatitis in Mice. Gastroenterology, 2020, 158, 1083-1094.	0.6	33
15	Measuring digestive protease activation in the mouse pancreas. Pancreatology, 2020, 20, 288-292.	0.5	8
16	Loss of chymotrypsin-like protease (CTRL) alters intrapancreatic protease activation but not pancreatitis severity in mice. Scientific Reports, 2020, 10, 11731.	1.6	10
17	Lipotoxicity and Cytokine Storm in Severe Acute Pancreatitis and COVID-19. Gastroenterology, 2020, 159, 824-827.	0.6	55
18	LIFEStyle, Prevention and Risk of Acute PaNcreatitis (LIFESPAN): protocol of a multicentre and multinational observational case–control study. BMJ Open, 2020, 10, e029660.	0.8	3

#	Article	IF	CITATIONS
19	Alcohol-dependent effect of <i>PRSS1-PRSS2</i> haplotype in chronic pancreatitis. Gut, 2020, 69, 1713-1715.	6.1	10
20	Channelopathy of the Pancreas Causes Chronic Pancreatitis. Gastroenterology, 2020, 158, 1538-1540.	0.6	13
21	Ethanol feeding accelerates pancreatitis progression in <i>CPA1 N256K</i> mutant mice. American Journal of Physiology - Renal Physiology, 2020, 318, G694-G704.	1.6	13
22	Inactivation of mesotrypsin by chymotrypsin C prevents trypsin inhibitor degradation. Journal of Biological Chemistry, 2020, 295, 3447-3455.	1.6	9
23	International Consensus Guidelines for Risk Factors in Chronic Pancreatitis. Recommendations from the working group for the international consensus guidelines for chronic pancreatitis in collaboration with the International Association of Pancreatology, the American Pancreatic Association, the Japan Pancreas Society, and European Pancreatic Club. Pancreatology, 2020, 20,	0.5	40
24	579-585. Human <i>CPA1</i> mutation causes digestive enzyme misfolding and chronic pancreatitis in mice. Gut, 2019, 68, 301-312.	6.1	54
25	Engineering mouse cationic trypsinogen for rapid and selective activation by cathepsin B. Scientific Reports, 2019, 9, 9188.	1.6	7
26	CELA2A mutations predispose to early-onset atherosclerosis and metabolic syndrome and affect plasma insulin and platelet activation. Nature Genetics, 2019, 51, 1233-1243.	9.4	23
27	Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology, 2019, 156, 1951-1968.e1.	0.6	180
28	Novel Pathogenic PRSS1 Variant p.Glu190Lys in a Case of Chronic Pancreatitis. Frontiers in Genetics, 2019, 10, 46.	1.1	7
29	Observational longitudinal multicentre investigation of acute pancreatitis (GOULASH PLUS): follow-up of the GOULASH study, protocol. BMJ Open, 2019, 9, e025500.	0.8	5
30	Protease-Sensitive Pancreatic Lipase Variants Are Associated With Early Onset Chronic Pancreatitis. American Journal of Gastroenterology, 2019, 114, 974-983.	0.2	48
31	Natural single-nucleotide deletion in chymotrypsinogen C gene increases severity of secretagogue-induced pancreatitis in C57BL/6 mice. JCI Insight, 2019, 4, e129717.	2.3	13
32	Endoscopic sphincterotoMy for delayIng choLecystectomy in mild acute biliarY pancreatitis (EMILY) Tj ETQq0 0	0 rgBT /O\	verlock 10 Tf 5
33	EPC/HPSG evidence-based guidelines for the management of pediatric pancreatitis. Pancreatology, 2018, 18, 146-160.	0.5	89
34	Genome-wide association study identifies inversion in the <i>CTRB1-CTRB2</i> locus to modify risk for alcoholic and non-alcoholic chronic pancreatitis. Gut, 2018, 67, 1855-1863.	6.1	97
35	The common truncation variant in pancreatic lipase related protein 2 (PNLIPRP2) is expressed poorly and does not alter risk for chronic pancreatitis. PLoS ONE, 2018, 13, e0206869.	1.1	13
36	Trypsinogen isoforms in the ferret pancreas. Scientific Reports, 2018, 8, 15094.	1.6	2

#	Article	IF	CITATIONS
37	A preclinical model of chronic pancreatitis driven by trypsinogen autoactivation. Nature Communications, 2018, 9, 5033.	5.8	55
38	Pancreatitis-Associated Genes and Pancreatic Cancer Risk. Pancreas, 2018, 47, 1078-1086.	0.5	39
39	Chymotrypsin Reduces the Severity of Secretagogue-Induced Pancreatitis in Mice. Gastroenterology, 2018, 155, 1017-1021.	0.6	30
40	Novel chymotrypsin C (CTRC) variant c.173C>T (p.T58M) in a case of late onset recurrent acute pancreatitis. Pancreatology, 2018, 18, S37-S38.	0.5	0
41	Overlapping Specificity of Duplicated Human Pancreatic Elastase 3 Isoforms and Archetypal Porcine Elastase 1 Provides Clues to Evolution of Digestive Enzymes. Journal of Biological Chemistry, 2017, 292, 2690-2702.	1.6	12
42	Misfolding cationic trypsinogen variant p.L104P causes hereditary pancreatitis. Gut, 2017, 66, 1727-1728.	6.1	22
43	A novel p.Ser282Pro <i>CPA1</i> variant is associated with autosomal dominant hereditary pancreatitis. Gut, 2017, 66, 1728-1730.	6.1	23
44	No significant enrichment of rare functionally defective CPA1 variants in a large Chinese idiopathic chronic pancreatitis cohort. Human Mutation, 2017, 38, 959-963.	1.1	19
45	Genetic Risk in Chronic Pancreatitis: The Trypsin-Dependent Pathway. Digestive Diseases and Sciences, 2017, 62, 1692-1701.	1.1	129
46	Pancreatic Cancer Cell Lines Heterozygous for the SPINK1 p.N34S Haplotype Exhibit Diminished Expression of the Variant Allele. Pancreas, 2017, 46, e54-e55.	0.5	9
47	Detection of human elastase isoforms by the ScheBo Pancreatic Elastase 1 Test. American Journal of Physiology - Renal Physiology, 2017, 312, G606-G614.	1.6	15
48	Minutes of the Business Meeting of the American Pancreatic Association, Friday, October 28, 2016, Boston, Massachusetts. Pancreas, 2017, 46, 1237-1237.	0.5	0
49	High versus low energy administration in the early phase of acute pancreatitis (GOULASH trial): protocol of a multicentre randomised double-blind clinical trial. BMJ Open, 2017, 7, e015874.	0.8	30
50	Novel PRSS1 Mutation p.P17T Validates Pathogenic Relevance of CTRC-Mediated Processing of the Trypsinogen Activation Peptide in Chronic Pancreatitis. American Journal of Gastroenterology, 2017, 112, 1896-1898.	0.2	7
51	Partial and complete SPINK1 deficiency cause distinct pancreatic phenotypes. Human Mutation, 2017, 38, 1619-1619.	1.1	4
52	Smoking and Drinking Synergize in Pancreatitis: Multiple Hits on Multiple Targets. Gastroenterology, 2017, 153, 1479-1481.	0.6	25
53	Genetic risk in chronic pancreatitis. Current Opinion in Gastroenterology, 2017, 33, 390-395.	1.0	74
54	Chronic pancreatitis: Multicentre prospective data collection and analysis by the Hungarian Pancreatic Study Group. PLoS ONE, 2017, 12, e0171420.	1.1	23

#	Article	lF	CITATIONS
55	Genetic Analysis of Human Chymotrypsin-Like Elastases 3A and 3B (CELA3A and CELA3B) to Assess the Role of Complex Formation between Proelastases and Procarboxypeptidases in Chronic Pancreatitis. International Journal of Molecular Sciences, 2016, 17, 2148.	1.8	13
56	Prospective, Multicentre, Nationwide Clinical Data from 600 Cases of Acute Pancreatitis. PLoS ONE, 2016, 11, e0165309.	1.1	191
57	SPINK1 Promoter Variants in Chronic Pancreatitis. Pancreas, 2016, 45, 148-153.	0.5	10
58	Tighter Control by Chymotrypsin C (CTRC) Explains Lack of Association between Human Anionic Trypsinogen and Hereditary Pancreatitis. Journal of Biological Chemistry, 2016, 291, 12897-12905.	1.6	12
59	Complex Formation of Human Proelastases with Procarboxypeptidases A1 and A2. Journal of Biological Chemistry, 2016, 291, 17706-17716.	1.6	28
60	Minutes of the Business Meeting of the American Pancreatic Association, Friday, November 6, 2015, San Diego, California. Pancreas, 2016, 45, 1376-1377.	0.5	0
61	Pathogenic cellular role of the p.L104P human cationic trypsinogen variant in chronic pancreatitis. American Journal of Physiology - Renal Physiology, 2016, 310, G477-G486.	1.6	24
62	A Common CCK-B Receptor Intronic Variant in Pancreatic Adenocarcinoma in a Hungarian Cohort. Pancreas, 2016, 45, 541-545.	0.5	0
63	CFTR: A New Horizon in the Pathomechanism and Treatment of Pancreatitis. Reviews of Physiology, Biochemistry and Pharmacology, 2016, 170, 37-66.	0.9	82
64	Variants in pancreatic carboxypeptidase genes <i>CPA2</i> and <i>CPB1</i> are not associated with chronic pancreatitis. American Journal of Physiology - Renal Physiology, 2015, 309, G688-G694.	1.6	19
65	Gene Conversion Between Cationic Trypsinogen (<i>PRSS1</i>) and the Pseudogene Trypsinogen 6 (<i>PRSS3P2</i>) in Patients with Chronic Pancreatitis. Human Mutation, 2015, 36, 350-356.	1.1	19
66	Mesotrypsin Signature Mutation in a Chymotrypsin C (CTRC) Variant Associated with Chronic Pancreatitis. Journal of Biological Chemistry, 2015, 290, 17282-17292.	1.6	20
67	Alcohol Disrupts Levels and Function of the Cystic Fibrosis Transmembrane Conductance Regulator to Promote Development of Pancreatitis. Gastroenterology, 2015, 148, 427-439.e16.	0.6	159
68	Functional significance of SPINK1 promoter variants in chronic pancreatitis. American Journal of Physiology - Renal Physiology, 2015, 308, G779-G784.	1.6	10
69	A novel mutation in PNLIP causes pancreatic triglyceride lipase deficiency through protein misfolding. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1372-1379.	1.8	29
70	Genetic analysis of the bicarbonate secreting anion exchanger SLC26A6 in chronic pancreatitis. Pancreatology, 2015, 15, 508-513.	0.5	7
71	Serine protease inhibitor Kazal type 1 (SPINK1) drives proliferation and anoikis resistance in a subset of ovarian cancers. Oncotarget, 2015, 6, 35737-35754.	0.8	23
72	Tyrosine Sulfation of Human Trypsin Steers S2' Subsite Selectivity towards Basic Amino Acids. PLoS ONE, 2014, 9, e102063.	1.1	10

#	Article	IF	CITATIONS
73	Functional effects of 13 rare <i>PRSS1</i> variants presumed to cause chronic pancreatitis. Gut, 2014, 63, 337-343.	6.1	66
74	Exonic variants affecting pre-mRNA splicing add to genetic burden in chronic pancreatitis. Gut, 2014, 63, 860-861.	6.1	11
75	Zymogen Activation Confers Thermodynamic Stability on a Key Peptide Bond and Protects Human Cationic Trypsin from Degradation. Journal of Biological Chemistry, 2014, 289, 4753-4761.	1.6	9
76	Human cationic trypsinogen (<i>PRSS1</i>) variants and chronic pancreatitis. American Journal of Physiology - Renal Physiology, 2014, 306, G466-G473.	1.6	68
77	Comprehensive functional analysis of chymotrypsin C (<i>CTRC</i>) variants reveals distinct loss-of-function mechanisms associated with pancreatitis risk. Gut, 2013, 62, 1616-1624.	6.1	89
78	Robust autoactivation, chymotrypsinÂC independence and diminished secretion define a subset of hereditary pancreatitisâ€associated cationic trypsinogen mutants. FEBS Journal, 2013, 280, 2888-2899.	2.2	21
79	Variants in CPA1 are strongly associated with early onset chronic pancreatitis. Nature Genetics, 2013, 45, 1216-1220.	9.4	255
80	Long-range Electrostatic Complementarity Governs Substrate Recognition by Human Chymotrypsin C, a Key Regulator of Digestive Enzyme Activation. Journal of Biological Chemistry, 2013, 288, 9848-9859.	1.6	32
81	Autoactivation of Mouse Trypsinogens Is Regulated by Chymotrypsin C via Cleavage of the Autolysis Loop. Journal of Biological Chemistry, 2013, 288, 24049-24062.	1.6	28
82	Increased Activation of Hereditary Pancreatitis-associated Human Cationic Trypsinogen Mutants in Presence of Chymotrypsin C. Journal of Biological Chemistry, 2012, 287, 20701-20710.	1.6	77
83	Determinants of chymotrypsinÂ <scp>C</scp> cleavage specificity in the calciumâ€binding loop of human cationic trypsinogen. FEBS Journal, 2012, 279, 4283-4292.	2.2	42
84	Trypsin Reduces Pancreatic Ductal Bicarbonate Secretion by Inhibiting CFTR Clâ^' Channels and Luminal Anion Exchangers. Gastroenterology, 2011, 141, 2228-2239.e6.	0.6	77
85	Intragenic Duplication. Pancreas, 2011, 40, 540-546.	0.5	21
86	Chymotrypsin C mutations in chronic pancreatitis. Journal of Gastroenterology and Hepatology (Australia), 2011, 26, 1238-1246.	1.4	65
87	Asparagineâ€linked glycosylation of human chymotrypsin C is required for folding and secretion but not for enzyme activity. FEBS Journal, 2011, 278, 4338-4350.	2.2	18
88	Chymotrypsin C Is a Co-activator of Human Pancreatic Procarboxypeptidases A1 and A2. Journal of Biological Chemistry, 2011, 286, 1819-1827.	1.6	31
89	High Affinity Small Protein Inhibitors of Human Chymotrypsin C (CTRC) Selected by Phage Display Reveal Unusual Preference for P4′ Acidic Residues. Journal of Biological Chemistry, 2011, 286, 22535-22545.	1.6	30
90	Expression of Recombinant Proteins with Uniform N-Termini. Methods in Molecular Biology, 2011, 705, 175-194.	0.4	27

#	Article	IF	CITATIONS
91	Autoantibodies Against the Exocrine Pancreas in Autoimmune Pancreatitis: Gene and Protein Expression Profiling and Immunoassays Identify Pancreatic Enzymes as a Major Target of the Inflammatory Process. American Journal of Gastroenterology, 2010, 105, 2060-2071.	0.2	126
92	Uncertainties in the classification of human cationic trypsinogen (PRSS1) variants as hereditary pancreatitis-associated mutations. Journal of Medical Genetics, 2010, 47, 348-350.	1.5	21
93	Pancreatitis-associated chymotrypsinogen C (CTRC) mutant elicits endoplasmic reticulum stress in pancreatic acinar cells. Gut, 2010, 59, 365-372.	6.1	69
94	Sequence Analysis of the Human Tyrosylprotein Sulfotransferase-2 Gene in Subjects with Chronic Pancreatitis. Pancreatology, 2010, 10, 165-172.	0.5	2
95	Cathepsin L Inactivates Human Trypsinogen, Whereas Cathepsin L-Deletion Reduces the Severity of Pancreatitis in Mice. Gastroenterology, 2010, 138, 726-737.	0.6	110
96	Complete Analysis of the Human Mesotrypsinogen Gene (PRSS3) in Patients with Chronic Pancreatitis. Pancreatology, 2010, 10, 243-249.	0.5	9
97	Intracellular Autoactivation of Human Cationic Trypsinogen Mutants Causes Reduced Trypsinogen Secretion and Acinar Cell Death. Journal of Biological Chemistry, 2009, 284, 33392-33399.	1.6	47
98	Variations in trypsinogen expression may influence the protective effect of the p.G191R PRSS2 variant in chronic pancreatitis. Gut, 2009, 58, 749-750.	6.1	3
99	Minigene analysis of intronic variants in common SPINK1 haplotypes associated with chronic pancreatitis. Gut, 2009, 58, 545-549.	6.1	61
100	Hereditary pancreatitis caused by mutation-induced misfolding of human cationic trypsinogen: A novel disease mechanism. Human Mutation, 2009, 30, 575-582.	1.1	137
101	A common African polymorphism abolishes tyrosine sulfation of human anionic trypsinogen (PRSS2). Biochemical Journal, 2009, 418, 155-161.	1.7	11
102	Proteolytic activation of human pancreatitis-associated protein is required for peptidoglycan binding and bacterial aggregation. Biochemical Journal, 2009, 420, 335-344.	1.7	26
103	Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nature Genetics, 2008, 40, 78-82.	9.4	369
104	The Guinea Pig Pancreas Secretes a Single Trypsinogen Isoform, Which Is Defective in Autoactivation. Pancreas, 2008, 37, 182-188.	0.5	7
105	Missense mutations in pancreatic secretory trypsin inhibitor (SPINK1) cause intracellular retention and degradation. Gut, 2007, 56, 1433-1438.	6.1	71
106	Chymotrypsin C (caldecrin) promotes degradation of human cationic trypsin: Identity with Rinderknecht's enzyme Y. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11227-11232.	3.3	142
107	Signal peptide variants that impair secretion of pancreatic secretory trypsin inhibitor (SPINK1) cause autosomal dominant hereditary pancreatitis. Human Mutation, 2007, 28, 469-476.	1.1	68
108	Addressable enzymes as protein therapeutics. Expert Opinion on Therapeutic Patents, 2006, 16, 719-721.	2.4	0

#	Article	IF	CITATIONS
109	Biochemical Models of Hereditary Pancreatitis. Endocrinology and Metabolism Clinics of North America, 2006, 35, 303-312.	1.2	34
110	Inactivity of Recombinant ELA2B Provides a New Example of Evolutionary Elastase Silencing in Humans. Pancreatology, 2006, 6, 117-122.	0.5	21
111	Expression of human cationic trypsinogen with an authentic N terminus using intein-mediated splicing in aminopeptidase P deficient Escherichia coli. Protein Expression and Purification, 2006, 48, 104-111.	0.6	32
112	Mesotrypsin, a brain trypsin, activates selectively proteinase-activated receptor-1, but not proteinase-activated receptor-2, in rat astrocytes. Journal of Neurochemistry, 2006, 99, 759-769.	2.1	33
113	Human mesotrypsin exhibits restricted S1' subsite specificity with a strong preference for small polar side chains. FEBS Journal, 2006, 273, 2942-2954.	2.2	24
114	Human cationic trypsinogen is sulfated on Tyr154. FEBS Journal, 2006, 273, 5044-5050.	2.2	24
115	A degradation-sensitive anionic trypsinogen (PRSS2) variant protects against chronic pancreatitis. Nature Genetics, 2006, 38, 668-673.	9.4	220
116	Mutations of human cationic trypsinogen (PRSS1) and chronic pancreatitis. Human Mutation, 2006, 27, 721-730.	1.1	110
117	Chymotrypsin C (Caldecrin) Stimulates Autoactivation of Human Cationic Trypsinogen. Journal of Biological Chemistry, 2006, 281, 11879-11886.	1.6	89
118	Activity of recombinant trypsin isoforms on human proteinase-activated receptors (PAR): mesotrypsin cannot activate epithelial PAR-1, -2, but weakly activates brain PAR-1. British Journal of Pharmacology, 2005, 146, 990-999.	2.7	48
119	Gene conversion cetween functional trypsinogen genesPRSS1andPRSS2associated with chronic pancreatitis in a six-year-old girl. Human Mutation, 2005, 25, 343-347.	1.1	48
120	Human Mesotrypsin Defies Natural Trypsin Inhibitors: From Passive Resistance to Active Destruction Protein and Peptide Letters, 2005, 12, 457-464.	0.4	50
121	The Tetra-aspartate Motif in the Activation Peptide of Human Cationic Trypsinogen Is Essential for Autoactivation Control but Not for Enteropeptidase Recognition. Journal of Biological Chemistry, 2005, 280, 29645-29652.	1.6	48
122	Genetic and biochemical characterization of the E32del polymorphism in human mesotrypsinogen. Pancreatology, 2005, 5, 273-278.	0.5	16
123	Interaction between trypsinogen isoforms in genetically determined pancreatitis: Mutation E79K in cationic trypsin (PRSS1) causes increased transactivation of anionic trypsinogen (PRSS2). Human Mutation, 2004, 23, 22-31.	1.1	55
124	Human anionic trypsinogen. Properties of autocatalytic activation and degradation and implications in pancreatic diseases. FEBS Journal, 2003, 270, 2047-2058.	0.2	84
125	Probing the Mechanism of a Membrane Transport Protein with Affinity Inactivators. Journal of Biological Chemistry, 2003, 278, 10641-10648.	1.6	13
126	Evolution of Trypsinogen Activation Peptides. Molecular Biology and Evolution, 2003, 20, 1767-1777.	3.5	97

#	Article	IF	CITATIONS
127	Human Mesotrypsin Is a Unique Digestive Protease Specialized for the Degradation of Trypsin Inhibitors. Journal of Biological Chemistry, 2003, 278, 48580-48589.	1.6	130
128	Trypsinogen hL is not a New Member of the Human Trypsinogen Family, but a Known Mouse Ortholog. Biological and Pharmaceutical Bulletin, 2003, 26, 909.	0.6	0
129	Hereditary Pancreatitis Caused by a Novel PRSS1 Mutation (Arg-122 → Cys) That Alters Autoactivation and Autodegradation of Cationic Trypsinogen. Journal of Biological Chemistry, 2002, 277, 5404-5410.	1.6	106
130	Human Cationic Trypsinogen. Journal of Biological Chemistry, 2002, 277, 6111-6117.	1.6	60
131	Changing the lactose permease of Escherichia coli into a galactose-specific symporter. Proceedings of the United States of America, 2002, 99, 6613-6618.	3.3	31
132	Binding of Hydrophobic d-Galactopyranosides to the Lactose Permease of Escherichia coli. Biochemistry, 2002, 41, 13039-13045.	1.2	30
133	Presence of Cathepsin B in the Human Pancreatic Secretory Pathway and Its Role in Trypsinogen Activation during Hereditary Pancreatitis. Journal of Biological Chemistry, 2002, 277, 21389-21396.	1.6	112
134	The kamikaze approach to membrane transport. Nature Reviews Molecular Cell Biology, 2001, 2, 610-620.	16.1	276
135	The Pathobiochemistry of Hereditary Pancreatitis: Studies on Recombinant Human Cationic Trypsinogen. Pancreatology, 2001, 1, 461-465.	0.5	20
136	The C-4 Hydroxyl Group of Galactopyranosides Is the Major Determinant for Ligand Recognition by the Lactose Permease ofEscherichia coliâ€. Biochemistry, 2001, 40, 13015-13019.	1.2	42
137	Arg-302 facilitates deprotonation of Glu-325 in the transport mechanism of the lactose permease from Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6068-6073.	3.3	61
138	High-Affinity Ca2+ Binding Inhibits Autoactivation of Rat Trypsinogen. Biochemical and Biophysical Research Communications, 2000, 275, 668-671.	1.0	13
139	Gain-of-Function Mutations Associated with Hereditary Pancreatitis Enhance Autoactivation of Human Cationic Trypsinogen. Biochemical and Biophysical Research Communications, 2000, 278, 286-289.	1.0	176
140	Human Cationic Trypsinogen. Journal of Biological Chemistry, 2000, 275, 22750-22755.	1.6	140
141	Ligand Recognition by the Lactose Permease of Escherichia coli:  Specificity and Affinity Are Defined by Distinct Structural Elements of Galactopyranosides. Biochemistry, 2000, 39, 5097-5103.	1.2	48
142	Functional Conservation in the Putative Substrate Binding Site of the Sucrose Permease from Escherichia coli. Biochemistry, 2000, 39, 6170-6175.	1.2	13
143	Hereditary pancreatitis-associated mutation Asn21 → lle stabilizes rat trypsinogen in vitro Journal of Biological Chemistry, 2000, 275, 14004.	1.6	0
144	Hereditary Pancreatitis-associated Mutation Asn21 → lle Stabilizes Rat Trypsinogen in Vitro. Journal of Biological Chemistry, 1999, 274, 29699-29704.	1.6	42

#	Article	IF	CITATIONS
145	Characterization of Glu126 and Arg144, Two Residues That Are Indispensable for Substrate Binding in the Lactose Permease of Escherichia coli. Biochemistry, 1999, 38, 813-819.	1.2	81
146	Trypsinogen Stabilization by Mutation Arg117→His: A Unifying Pathomechanism for Hereditary Pancreatitis?. Biochemical and Biophysical Research Communications, 1999, 264, 505-508.	1.0	49
147	Affinity Purification of Recombinant Trypsinogen Using Immobilized Ecotin. Protein Expression and Purification, 1998, 12, 291-294.	0.6	44
148	Cysâ€scanning mutagenesis: a novel approach to structure—function relationships in polytopic membrane proteins. FASEB Journal, 1998, 12, 1281-1299.	0.2	344
149	Role of glutamate-269 in the lactose permease of <i>Escherichia coli</i> . Molecular Membrane Biology, 1994, 11, 9-16.	2.0	55
150	Cysteine scanning mutagenesis of the Nâ€ŧerminal 32 amino acid residues in the lactose permease of <i>Escherichia coli</i> . Protein Science, 1994, 3, 240-247.	3.1	32
151	The role of transmembrane domain III in the lactose permease of <i>escherichia coli</i> . Protein Science, 1994, 3, 2302-2310.	3.1	21
152	Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of <i>Escherichia coli</i> . Protein Science, 1993, 2, 1024-1033.	3.1	112