
Eduardo Costa da Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9342138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolved explainable classifications for lymph node metastases. Neural Networks, 2022, 148, 1-12.	3.3	4
2	A Parametric Study of Inductive SWIPT Systems Assisted by Metamaterial Using Virtual Magnetic TL-Based Channel Modeling. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2021, 20, 195-207.	0.4	1
3	Explainable Artificial Intelligence for Bias Detection in COVID CT-Scan Classifiers. Sensors, 2021, 21, 5657.	2.1	21
4	Design and evaluation of closed-loop GMI magnetometer for biomedical applications. Measurement: Sensors, 2021, 18, 100297.	1.3	2
5	Sharpening Local Interpretable Model-Agnostic Explanations forÂHistopathology: Improved Understandability and Reliability. Lecture Notes in Computer Science, 2021, , 540-549.	1.0	7
6	Classification of mechanisms underlying cardiac arrhythmias by deep learning. Research on Biomedical Engineering, 2020, 36, 475-487.	1.5	3
7	Design, implementation and experimental characterisation of a high sensitivity GMI gradiometer with an interference compensation system. IET Science, Measurement and Technology, 2020, 14, 688-694.	0.9	3
8	Approximate Explanations for Classification of Histopathology Patches. Communications in Computer and Information Science, 2020, , 517-526.	0.4	0
9	Local Interpretable Model-Agnostic Explanations for Classification of Lymph Node Metastases. Sensors, 2019, 19, 2969.	2.1	84
10	AeroDesign Aircraft Wing Optimization Using Genetic Algorithm. , 2019, , .		0
11	Improving Transfer Learning Performance: An Application in the Classification of Remote Sensing Data. , 2019, , .		2
12	High sensitivity pressure transducer based on the phase characteristics of GMI magnetic sensors. Measurement Science and Technology, 2018, 29, 035106.	1.4	11
13	Development of an automated system based on the concept of evolutionary hardware to determine the optimal operating point of GMI sensors. Journal of Physics: Conference Series, 2018, 1044, 012021.	0.3	0
14	Development of an Alternative Battery Charging for Remotely Piloted Aircraft Location System Based on Photovoltaic Cells. Journal of Physics: Conference Series, 2018, 1065, 202006.	0.3	0
15	Biomedical comparison of magnetometers for non-ferromagnetic metallic foreign body detection. Journal of Physics: Conference Series, 2018, 1044, 012013.	0.3	5
16	High sensitivity GMI gradiometer with an active interference compensation system. , 2018, , .		0
17	Multi-parameter fuzzy design space for QbD approach applied in the development of biomedical devices. Journal of Physics: Conference Series, 2018, 1044, 012051.	0.3	1
18	Method based on computational intelligence techniques for localization of firearms projectiles inserted into the human body, by high sensitivity magnetic measurements. Journal of Physics: Conference Series, 2018, 1044, 012044.	0.3	0

#	Article	IF	CITATIONS
19	Quality by Design approach in the development of a magnetic transducer for biomedical measurements: preliminary results on Design Space configuration. Journal of Physics: Conference Series, 2016, 772, 012016.	0.3	2
20	Application of genetic algorithms to the solution of the biomagnetic inverse problem, using data acquired by a 16-Channel SQUID system. , 2016, , .		0
21	Enhanced Neuro-Genetic model aimed at optimizing the sensitivity of GMI sensors, subjected to linearity and span constraints. , 2016, , .		0
22	Neuro-genetic system for optimization of GMI samples sensitivity. Neural Networks, 2016, 75, 141-149.	3.3	1
23	Electronic circuit for excitation of inductive loads with high currents. Electronics Letters, 2015, 51, 1808-1809.	0.5	3
24	Automated Evaluation of Dynamic Performance of Impulse Voltage Measurement Systems. Journal of Physics: Conference Series, 2015, 575, 012011.	0.3	0
25	Point matching: A new electronic method for homogenizing the phase characteristics of giant magnetoimpedance sensors. Review of Scientific Instruments, 2014, 85, 084708.	0.6	9
26	An enhanced electronic topology aimed at improving the phase sensitivity of GMI sensors. Measurement Science and Technology, 2014, 25, 115010.	1.4	9
27	Electronic approach for enhancing impedance phase sensitivity of GMI magnetic sensors. Electronics Letters, 2013, 49, 396-397.	0.5	7
28	Progress Toward a Hundredfold Enhancement in the Impedance Phase Sensitivity of GMI Magnetic Sensors aiming at Biomagnetic Measurements. IFMBE Proceedings, 2013, , 742-745.	0.2	4
29	Development of a fast and reliable system for the automatic characterization of Giant magnetoimpedance samples. Acta IMEKO (2012), 2013, 2, 21.	0.4	1
30	Modelagem da sensibilidade de amostras GMI por redes neurais. Controle and Automacao, 2012, 23, 636-648.	0.2	3
31	An electronic approach to homogenize the impedance phase characteristics of heterogeneous GMI sensors. Acta IMEKO (2012), 2012, 1, 70.	0.4	3
32	High sensitivity giant magnetoimpedance (GMI) magnetic transducer: magnitude versus phase sensing. Measurement Science and Technology, 2011, 22, 035204.	1.4	26
33	Sensitivity improvement of GMI magnetic and pressure transducers for biomedical measurements. Revista Brasileira De Engenharia Biomedica, 2011, 27, 79-89.	0.3	3
34	Transdutor de pressão, baseado nas caracterÃsticas de fase do efeito GMI, destinado a aplicações biomédicas. Controle and Automacao, 2010, 21, 598-608.	0.2	2
35	Magnetic field transducers based on the phase characteristics of GMI sensors and aimed at biomedical applications. IFMBE Proceedings, 2009, , 652-656.	0.2	9