
Richard A Cerione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9341948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-resolution structures of mitochondrial glutaminase C tetramers indicate conformational changes upon phosphate binding. Journal of Biological Chemistry, 2022, 298, 101564.	3.4	9
2	New insights into the molecular mechanisms of glutaminase C inhibitors in cancer cells using serial room temperature crystallography. Journal of Biological Chemistry, 2022, 298, 101535.	3.4	21
3	Exploring the Role of Transglutaminase in Patients with Glioblastoma: Current Perspectives. OncoTargets and Therapy, 2022, Volume 15, 277-290.	2.0	5
4	Mechanistic basis for the allosteric activation of mitochondrial glutaminase C, a key driver of glutamine metabolism in cancer cells. FASEB Journal, 2022, 36, .	0.5	0
5	Embryonic Stem Cell-Derived Extracellular Vesicles Maintain ESC Stemness by Activating FAK. Developmental Cell, 2021, 56, 277-291.e6.	7.0	43
6	Pharmacological and genetic perturbation establish SIRT5 as a promising target in breast cancer. Oncogene, 2021, 40, 1644-1658.	5.9	45
7	Isolation and characterization of extracellular vesicles produced by cell lines. STAR Protocols, 2021, 2, 100295.	1.2	29
8	KRAS-dependent cancer cells promote survival by producing exosomes enriched in Survivin. Cancer Letters, 2021, 517, 66-77.	7.2	22
9	Cdc42 functions as a regulatory node for tumourâ€derived microvesicle biogenesis. Journal of Extracellular Vesicles, 2021, 10, e12051.	12.2	19
10	Extracellular Vesicles and Their Roles in Cancer Progression. Methods in Molecular Biology, 2021, 2174, 143-170.	0.9	82
11	Extracellular vesicles and their roles in stem cell biology. Stem Cells, 2020, 38, 469-476.	3.2	34
12	Structure of the Visual Signaling Complex between Transducin and Phosphodiesterase 6. Molecular Cell, 2020, 80, 237-245.e4.	9.7	21
13	Lysine succinylation and SIRT5 couple nutritional status to glutamine catabolism. Molecular and Cellular Oncology, 2020, 7, 1735284.	0.7	8
14	The two splice variant forms of Cdc42 exert distinct and essential functions in neurogenesis. Journal of Biological Chemistry, 2020, 295, 4498-4512.	3.4	18
15	The activation loop and substrate-binding cleft of glutaminase C are allosterically coupled. Journal of Biological Chemistry, 2020, 295, 1328-1337.	3.4	5
16	Exosomes as Sentinels against Bacterial Pathogens. Developmental Cell, 2020, 53, 138-139.	7.0	7
17	Identification of ALDH1A3 as a Viable Therapeutic Target in Breast Cancer Metastasis–Initiating Cells. Molecular Cancer Therapeutics, 2020, 19, 1134-1147.	4.1	17
18	The Arf-GAP and protein scaffold Cat1/Git1 as a multifaceted regulator of cancer progression. Small GTPases 2020 11 77-85	1.6	6

#	Article	IF	CITATIONS
19	The activation loop and substrate-binding cleft of glutaminase C are allosterically coupled. Journal of Biological Chemistry, 2020, 295, 1328-1337.	3.4	6
20	Structures of the Rhodopsin-Transducin Complex: Insights into G-Protein Activation. Molecular Cell, 2019, 75, 781-790.e3.	9.7	74
21	New insights into extracellular vesicle biogenesis and function. Journal of Cell Science, 2019, 132, .	2.0	152
22	Inhibition of cancer metabolism: a patent landscape. Pharmaceutical Patent Analyst, 2019, 8, 117-138.	1.1	4
23	GAC inhibitors with a 4-hydroxypiperidine spacer: Requirements for potency. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126632.	2.2	9
24	Controlling Surface Chemical Heterogeneities of Ultrasmall Fluorescent Core–Shell Silica Nanoparticles as Revealed by High-Performance Liquid Chromatography. Journal of Physical Chemistry C, 2019, 123, 23246-23254.	3.1	7
25	Starving the Devourer: Cutting Cancer Off from Its Favorite Foods. Cell Chemical Biology, 2019, 26, 1197-1199.	5.2	5
26	Liver-Type Glutaminase GLS2 Is a Druggable Metabolic Node in Luminal-Subtype Breast Cancer. Cell Reports, 2019, 29, 76-88.e7.	6.4	66
27	Amorphous Quantum Nanomaterials: Amorphous Quantum Nanomaterials (Adv. Mater. 5/2019). Advanced Materials, 2019, 31, 1970034.	21.0	2
28	Purification of the Rhodopsin–Transducin Complex for Structural Studies. Methods in Molecular Biology, 2019, 2009, 307-315.	0.9	2
29	Reconstitution of the Rhodopsin–Transducin Complex into Lipid Nanodiscs. Methods in Molecular Biology, 2019, 2009, 317-324.	0.9	3
30	Lipid-filled vesicles modulate macrophages. Science, 2019, 363, 931-932.	12.6	11
31	Loss of Sirtuin 1 Alters the Secretome of Breast Cancer Cells by Impairing Lysosomal Integrity. Developmental Cell, 2019, 49, 393-408.e7.	7.0	102
32	SIRT5 stabilizes mitochondrial glutaminase and supports breast cancer tumorigenesis. Proceedings of the United States of America, 2019, 116, 26625-26632.	7.1	84
33	Amorphous Quantum Nanomaterials. Advanced Materials, 2019, 31, 1806993.	21.0	15
34	The diamond anniversary of tissue transglutaminase: a protein of many talents. Drug Discovery Today, 2018, 23, 575-591.	6.4	38
35	Characterization of the interactions of potent allosteric inhibitors with glutaminase C, a key enzyme in cancer cell glutamine metabolism. Journal of Biological Chemistry, 2018, 293, 3535-3545.	3.4	70
36	The distinct traits of extracellular vesicles generated by transformed cells. Small GTPases, 2018, 9, 427-432.	1.6	4

#	Article	IF	CITATIONS
37	The experiences of a biochemist in the evolving world of G protein-dependent signaling. Cellular Signalling, 2018, 41, 2-8.	3.6	2
38	Gain-of-function screen of α-transducin identifies an essential phenylalanine residue necessary for full effector activation. Journal of Biological Chemistry, 2018, 293, 17941-17952.	3.4	5
39	Probing the mechanisms of extracellular vesicle biogenesis and function in cancer. Biochemical Society Transactions, 2018, 46, 1137-1146.	3.4	28
40	Targeting Therapy Resistance: When Glutamine Catabolism Becomes Essential. Cancer Cell, 2018, 33, 795-797.	16.8	12
41	A small molecule regulator of tissue transglutaminase conformation inhibits the malignant phenotype of cancer cells. Oncotarget, 2018, 9, 34379-34397.	1.8	11
42	Opening up about Tissue Transglutaminase: When Conformation Matters More than Enzymatic Activity. Med One, 2018, 3, .	1.0	9
43	Extracellular vesicle docking at the cellular port: Extracellular vesicle binding and uptake. Seminars in Cell and Developmental Biology, 2017, 67, 48-55.	5.0	230
44	A tale of two glutaminases: homologous enzymes with distinct roles in tumorigenesis. Future Medicinal Chemistry, 2017, 9, 223-243.	2.3	109
45	A class of extracellular vesicles from breast cancer cells activates VEGF receptors and tumour angiogenesis. Nature Communications, 2017, 8, 14450.	12.8	179
46	Conformational changes in the activation loop of mitochondrial glutaminase C: A direct fluorescence readout that distinguishes the binding of allosteric inhibitors from activators. Journal of Biological Chemistry, 2017, 292, 6095-6107.	3.4	21
47	Glutamine Metabolism in Cancer: Understanding the Heterogeneity. Trends in Cancer, 2017, 3, 169-180.	7.4	472
48	Breast cancer-derived extracellular vesicles stimulate myofibroblast differentiation and pro-angiogenic behavior of adipose stem cells. Matrix Biology, 2017, 60-61, 190-205.	3.6	50
49	Molecular mechanism of Gαi activation by non-GPCR proteins with a Gα-Binding and Activating motif. Nature Communications, 2017, 8, 15163.	12.8	39
50	Cool-associated Tyrosine-phosphorylated Protein 1 Is Required for the Anchorage-independent Growth of Cervical Carcinoma Cells by Binding Paxillin and Promoting AKT Activation. Journal of Biological Chemistry, 2017, 292, 3947-3957.	3.4	4
51	Targeting amino acid metabolism for cancer therapy. Drug Discovery Today, 2017, 22, 796-804.	6.4	215
52	Isolation and structure–function characterization of a signaling-active rhodopsin–G protein complex. Journal of Biological Chemistry, 2017, 292, 14280-14289.	3.4	22
53	The stem cell/cancer stem cell marker ALDH1A3 regulates the expression of the survival factor tissue transglutaminase, in mesenchymal glioma stem cells. Oncotarget, 2017, 8, 22325-22343.	1.8	36
54	ALDH1A3 in CSCs. Aging, 2017, 9, 1351-1352.	3.1	3

#	Article	IF	CITATIONS
55	The Enrichment of Survivin in Exosomes from Breast Cancer Cells Treated with Paclitaxel Promotes Cell Survival and Chemoresistance. Cancers, 2016, 8, 111.	3.7	113
56	Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nature Communications, 2016, 7, 11958.	12.8	182
57	Extracellular Vesicles: Satellites of Information Transfer in Cancer and Stem Cell Biology. Developmental Cell, 2016, 37, 301-309.	7.0	152
58	The Different Conformational States of Tissue Transglutaminase Have Opposing Affects on Cell Viability. Journal of Biological Chemistry, 2016, 291, 9119-9132.	3.4	29
59	An Essential Role for Cdc42 in the Functioning of the Adult Mammary Gland. Journal of Biological Chemistry, 2016, 291, 8886-8895.	3.4	12
60	Mechanistic Basis of Glutaminase Activation. Journal of Biological Chemistry, 2016, 291, 20900-20910.	3.4	28
61	Microvesicle-mediated Wnt/β-Catenin Signaling Promotes Interspecies Mammary Stem/Progenitor Cell Growth. Journal of Biological Chemistry, 2016, 291, 24390-24405.	3.4	16
62	Microvesicle Cargo and Function Changes upon Induction of Cellular Transformation. Journal of Biological Chemistry, 2016, 291, 19774-19785.	3.4	44
63	The oncogenic transcription factor c-Jun regulates glutaminase expression and sensitizes cells to glutaminase-targeted therapy. Nature Communications, 2016, 7, 11321.	12.8	132
64	Identifying the functional contribution of the defatty-acylase activity of SIRT6. Nature Chemical Biology, 2016, 12, 614-620.	8.0	79
65	Delivery of Therapeutic Proteins via Extracellular Vesicles: Review and Potential Treatments for Parkinson's Disease, Glioma, and Schwannoma. Cellular and Molecular Neurobiology, 2016, 36, 417-427.	3.3	87
66	Design and evaluation of novel glutaminase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 1819-1839.	3.0	50
67	Microvesicles released from tumor cells disrupt epithelial cell morphology and contractility. Journal of Biomechanics, 2016, 49, 1272-1279.	2.1	17
68	Balancing redox stress: anchorage-independent growth requires reductive carboxylation. Translational Cancer Research, 2016, 5, S433-S437.	1.0	3
69	Aspirin's Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses. Molecular Medicine, 2015, 21, 526-535.	4.4	97
70	Emerging picture of the distinct traits and functions of microvesicles and exosomes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3589-3590.	7.1	55
71	Mechanism by which a recently discovered allosteric inhibitor blocks glutamine metabolism in transformed cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 394-399.	7.1	76
72	Less than the sum of its parts, a leinamycin precursor has superior properties. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8164-8165.	7.1	0

#	Article	IF	CITATIONS
73	Simultaneously Targeting Tissue Transglutaminase and Kidney Type Glutaminase Sensitizes Cancer Cells to Acid Toxicity and Offers New Opportunities for Therapeutic Intervention. Molecular Pharmaceutics, 2015, 12, 46-55.	4.6	31
74	Inhibiting Heat Shock Factor 1 in Human Cancer Cells with a Potent RNA Aptamer. PLoS ONE, 2014, 9, e96330.	2.5	32
75	Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations. Biomedical Microdevices, 2014, 16, 869-877.	2.8	87
76	Cancerous epithelial cell lines shed extracellular vesicles with a bimodal size distribution that is sensitive to glutamine inhibition. Physical Biology, 2014, 11, 065001.	1.8	21
77	A Novel Mechanism by Which Tissue Transglutaminase Activates Signaling Events That Promote Cell Survival. Journal of Biological Chemistry, 2014, 289, 10115-10125.	3.4	41
78	Glutaminase regulation in cancer cells: a druggable chain of events. Drug Discovery Today, 2014, 19, 450-457.	6.4	100
79	Identification of mTORC2 as a Necessary Component of HRG/ErbB2-Dependent Cellular Transformation. Molecular Cancer Research, 2014, 12, 940-952.	3.4	20
80	Microvesicles as Mediators of Intercellular Communication in Cancer. Methods in Molecular Biology, 2014, 1165, 147-173.	0.9	91
81	Inactivation of Cdc42 in embryonic brain results in hydrocephalus with ependymal cell defects in mice. Protein and Cell, 2013, 4, 231-242.	11.0	35
82	Therapeutic strategies impacting cancer cell glutamine metabolism. Future Medicinal Chemistry, 2013, 5, 1685-1700.	2.3	110
83	A Mechanism for the Upregulation of EGF Receptor Levels in Glioblastomas. Cell Reports, 2013, 3, 2008-2020.	6.4	44
84	SIRT4 Has Tumor-Suppressive Activity and Regulates the Cellular Metabolic Response to DNA Damage by Inhibiting Mitochondrial Glutamine Metabolism. Cancer Cell, 2013, 23, 450-463.	16.8	389
85	Prenylation and Membrane Localization of Cdc42 Are Essential for Activation by DOCK7. Biochemistry, 2013, 52, 4354-4363.	2.5	28
86	Rho GTPases and their roles in cancer metabolism. Trends in Molecular Medicine, 2013, 19, 74-82.	6.7	71
87	Deletion of Cdc42 Enhances ADAM17-Mediated Vascular Endothelial Growth Factor Receptor 2 Shedding and Impairs Vascular Endothelial Cell Survival and Vasculogenesis. Molecular and Cellular Biology, 2013, 33, 4181-4197.	2.3	42
88	Small Angle X-Ray Scattering Studies of Mitochondrial Glutaminase C Reveal Extended Flexible Regions, and Link Oligomeric State with Enzyme Activity. PLoS ONE, 2013, 8, e74783.	2.5	29
89	The Adaptor Protein and Arf GTPase-activating Protein Cat-1/Git-1 Is Required for Cellular Transformation. Journal of Biological Chemistry, 2012, 287, 31462-31470.	3.4	14
90	Characterization of a Novel Activated Ran GTPase Mutant and Its Ability to Induce Cellular Transformation. Journal of Biological Chemistry, 2012, 287, 24955-24966.	3.4	13

#	Article	IF	CITATIONS
91	A Constitutively Active Gα Subunit Provides Insights into the Mechanism of G Protein Activation. Biochemistry, 2012, 51, 3232-3240.	2.5	10
92	Dibenzophenanthridines as Inhibitors of Glutaminase C and Cancer Cell Proliferation. Molecular Cancer Therapeutics, 2012, 11, 1269-1278.	4.1	82
93	A Quantitative Fluorometric Approach for Measuring the Interaction of RhoGDI with Membranes and Rho GTPases. Methods in Molecular Biology, 2012, 827, 107-119.	0.9	1
94	A Minimal Rac Activation Domain in the Unconventional Guanine Nucleotide Exchange Factor Dock180. Biochemistry, 2011, 50, 1070-1080.	2.5	10
95	Sirt5 Is a NAD-Dependent Protein Lysine Demalonylase and Desuccinylase. Science, 2011, 334, 806-809.	12.6	1,165
96	Microcrystallography, high-pressure cryocooling and BioSAXS at MacCHESS. Journal of Synchrotron Radiation, 2011, 18, 70-73.	2.4	11
97	A Dominant-negative Gα Mutant That Traps a Stable Rhodopsin-Gα-GTP-βγ Complex. Journal of Biological Chemistry, 2011, 286, 12702-12711.	3.4	15
98	A Unique Role for Heat Shock Protein 70 and Its Binding Partner Tissue Transglutaminase in Cancer Cell Migration. Journal of Biological Chemistry, 2011, 286, 37094-37107.	3.4	41
99	Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4852-4857.	7.1	415
100	Targeting Mitochondrial Glutaminase Activity Inhibits Oncogenic Transformation. Cancer Cell, 2010, 18, 207-219.	16.8	707
101	Glutaminase: A Hot Spot For Regulation Of Cancer Cell Metabolism?. Oncotarget, 2010, 1, 734-740.	1.8	139
102	Phosphorylation of the Cool-1/β-Pix Protein Serves as a Regulatory Signal for the Migration and Invasive Activity of Src-transformed Cells. Journal of Biological Chemistry, 2010, 285, 18806-18816.	3.4	40
103	ECF potentiated oncogenesis requires a tissue transglutaminase-dependent signaling pathway leading to Src activation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1408-1413.	7.1	42
104	Activation of the Ran GTPase Is Subject to Growth Factor Regulation and Can Give Rise to Cellular Transformation. Journal of Biological Chemistry, 2010, 285, 5815-5826.	3.4	54
105	Unloading RNAs in the cytoplasm. Nucleus, 2010, 1, 139-143.	2.2	8
106	Cdc42 and Its Cellular Functions. , 2010, , 1785-1794.		2
107	Cdc42-mTOR Signaling Pathway Controls Hes5 and Pax6 Expression in Retinoic Acid-dependent Neural Differentiation. Journal of Biological Chemistry, 2009, 284, 5107-5118.	3.4	55
108	Tissue Transglutaminase Is an Essential Participant in the Epidermal Growth Factor-stimulated Signaling Pathway Leading to Cancer Cell Migration and Invasion. Journal of Biological Chemistry, 2009, 284, 17914-17925.	3.4	70

#	Article	IF	CITATIONS
109	New Insights into How the Rho Guanine Nucleotide Dissociation Inhibitor Regulates the Interaction of Cdc42 with Membranes. Journal of Biological Chemistry, 2009, 284, 23860-23871.	3.4	82
110	The molecular basis for the regulation of the cap-binding complex by the importins. Nature Structural and Molecular Biology, 2009, 16, 930-937.	8.2	83
111	Cardiac developmental defects and eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK) conditional knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6638-6643.	7.1	115
112	Effector Proteins Exert an Important Influence on the Signaling-active State of the Small GTPase Cdc42. Journal of Biological Chemistry, 2008, 283, 14153-14164.	3.4	47
113	GTP-Binding-Defective Forms of Tissue Transglutaminase Trigger Cell Death. Biochemistry, 2007, 46, 14819-14829.	2.5	37
114	Importance of Ca2+-Dependent Transamidation Activity in the Protection Afforded by Tissue Transglutaminase against Doxorubicin-Induced Apoptosisâ€. Biochemistry, 2006, 45, 13163-13174.	2.5	38
115	Influencing Cellular Transformation by Modulating the Rates of GTP Hydrolysis by Cdc42. Biochemistry, 2006, 45, 7750-7762.	2.5	33
116	Cool-1 functions as an essential regulatory node for EGFreceptor- and Src-mediated cell growth. Nature Cell Biology, 2006, 8, 945-956.	10.3	121
117	Biochemical Characterization of the Cool (Clonedâ€Outâ€ofâ€Library)/Pix (Pakâ€Interactive Exchange Factor) Proteins. Methods in Enzymology, 2006, 406, 58-69.	1.0	15
118	Two isoforms of tissue transglutaminase mediate opposing cellular fates. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18609-18614.	7.1	91
119	Identification of a DOCK180-related Guanine Nucleotide Exchange Factor That Is Capable of Mediating a Positive Feedback Activation of Cdc42. Journal of Biological Chemistry, 2006, 281, 35253-35262.	3.4	50
120	New Insights into the Role of Conserved, Essential Residues in the GTP Binding/GTP Hydrolytic Cycle of Large G Proteins. Journal of Biological Chemistry, 2006, 281, 9219-9226.	3.4	26
121	The Cool-2/α-Pix Protein Mediates a Cdc42-Rac Signaling Cascade. Current Biology, 2005, 15, 1-10.	3.9	217
122	A Switch 3 Point Mutation in the α Subunit of Transducin Yields a Unique Dominant-negative Inhibitor. Journal of Biological Chemistry, 2005, 280, 35696-35703.	3.4	21
123	Augmentation of Tissue Transglutaminase Expression and Activation by Epidermal Growth Factor Inhibit Doxorubicin-induced Apoptosis in Human Breast Cancer Cells. Journal of Biological Chemistry, 2004, 279, 41461-41467.	3.4	98
124	Perturbing the Linker Regions of the α-Subunit of Transducin. Journal of Biological Chemistry, 2004, 279, 40137-40145.	3.4	27
125	Novel regulatory mechanisms for the Dbl family guanine nucleotide exchange factor Cool-2/α-Pix. EMBO Journal, 2004, 23, 3492-3504.	7.8	78
126	Cdc42: new roads to travel. Trends in Cell Biology, 2004, 14, 127-132.	7.9	139

#	Article	IF	CITATIONS
127	Structural Elements, Mechanism, and Evolutionary Convergence of Rho Proteinâ^'Guanine Nucleotide Exchange Factor Complexes. Biochemistry, 2004, 43, 837-842.	2.5	120
128	RhoGDI Is Required for Cdc42-Mediated Cellular Transformation. Current Biology, 2003, 13, 1469-1479.	3.9	78
129	The Cbl proteins are binding partners for the Cool/Pix family of p21-activated kinase-binding proteins. FEBS Letters, 2003, 550, 119-123.	2.8	29
130	Activated Cdc42 Sequesters c-Cbl and Prevents EGF Receptor Degradation. Cell, 2003, 114, 715-725.	28.9	187
131	Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2743-2747.	7.1	303
132	Regulation of the Cool/Pix Proteins. Journal of Biological Chemistry, 2002, 277, 5644-5650.	3.4	97
133	lqg1p links spatial and secretion landmarks to polarity and cytokinesis. Journal of Cell Biology, 2002, 159, 601-611.	5.2	50
134	Antiapoptotic Cdc42 Mutants Are Potent Activators of Cellular Transformationâ€. Biochemistry, 2002, 41, 12350-12358.	2.5	26
135	Tissue Transglutaminase Protects against Apoptosis by Modifying the Tumor Suppressor Protein p110 Rb. Journal of Biological Chemistry, 2002, 277, 20127-20130.	3.4	103
136	Signaling to the Rho GTPases: networking with the DH domain. FEBS Letters, 2002, 513, 85-91.	2.8	117
137	Rac inserts its way into the immune response. Nature Immunology, 2001, 2, 194-196.	14.5	6
138	Multiple roles for Cdc42 in cell regulation. Current Opinion in Cell Biology, 2001, 13, 153-157.	5.4	150
139	The γ-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature, 2000, 405, 800-804.	27.8	214
140	Cdc42 and Rac Stimulate Exocytosis of Secretory Granules by Activating the Ip3/Calcium Pathway in RbI-2h3 Mast Cells. Journal of Cell Biology, 2000, 148, 481-494.	5.2	129
141	Structure of the Rho Family GTP-Binding Protein Cdc42 in Complex with the Multifunctional Regulator RhoGDI. Cell, 2000, 100, 345-356.	28.9	480
142	Specific Contributions of the Small GTPases Rho, Rac, and Cdc42 to Dbl Transformation. Journal of Biological Chemistry, 1999, 274, 23633-23641.	3.4	164
143	Requirement of p21-activated Kinase (PAK) for Salmonella typhimurium–induced Nuclear Responses. Journal of Experimental Medicine, 1999, 189, 1479-1488.	8.5	48
144	A Tyrosine-phosphorylated Protein That Binds to an Important Regulatory Region on the Cool Family of p21-activated Kinase-binding Proteins. Journal of Biological Chemistry, 1999, 274, 22393-22400.	3.4	197

#	Article	IF	CITATIONS
145	The Nuclear Cap-binding Complex Is a Novel Target of Growth Factor Receptor-coupled Signal Transduction. Journal of Biological Chemistry, 1999, 274, 4166-4173.	3.4	40
146	PAK to the future. Trends in Cell Biology, 1999, 9, 350-355.	7.9	359
147	Kinetics of Cdc42 Membrane Extraction by Rho-GDI Monitored by Real-Time Fluorescence Resonance Energy Transferâ€. Biochemistry, 1999, 38, 1744-1750.	2.5	59
148	Delineation of Two Functionally Distinct γPDE Binding Sites on the Bovine Retinal cGMP Phosphodiesterase by a Mutant γPDE Subunit. Biochemistry, 1999, 38, 1293-1299.	2.5	19
149	PAK3 mutation in nonsyndromic X-linked mental retardation. Nature Genetics, 1998, 20, 25-30.	21.4	432
150	Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP. Nature Structural Biology, 1998, 5, 1047-1052.	9.7	181
151	Identification of the Binding Surface on Cdc42Hs for p21-Activated Kinaseâ€. Biochemistry, 1998, 37, 14030-14037.	2.5	38
152	A Novel Regulator of p21-activated Kinases. Journal of Biological Chemistry, 1998, 273, 23633-23636.	3.4	285
153	lqg1p, a Yeast Homologue of the Mammalian IQGAPs, Mediates Cdc42p Effects on the Actin Cytoskeleton. Journal of Cell Biology, 1998, 142, 443-455.	5.2	91
154	Communication between Switch II and Switch III of the Transducin α Subunit Is Essential for Target Activation. Journal of Biological Chemistry, 1997, 272, 21673-21676.	3.4	24
155	Real Time Conformational Changes in the Retinal Phosphodiesterase Î ³ Subunit Monitored by Resonance Energy Transfer. Journal of Biological Chemistry, 1997, 272, 2714-2721.	3.4	17
156	Use of a Fluorescence Spectroscopic Readout To Characterize the Interactions of Cdc42Hs with Its Target/Effector, mPAK-3â€. Biochemistry, 1997, 36, 1173-1180.	2.5	40
157	C-terminal binding domain of Rho GDP-dissociation inhibitor directs N-terminal inhibitory peptide to GTPases. Nature, 1997, 387, 814-819.	27.8	164
158	The Dbl family of oncogenes. Current Opinion in Cell Biology, 1996, 8, 216-222.	5.4	497
159	The Pleckstrin Homology Domain Mediates Transformation by Oncogenic Dbl through Specific Intracellular Targeting. Journal of Biological Chemistry, 1996, 271, 19017-19020.	3.4	117
160	Identification of a Mouse p21Cdc42/Rac Activated Kinase. Journal of Biological Chemistry, 1995, 270, 22731-22737.	3.4	383
161	Oncogenically activated or ligand-stimulatedneukinase stimulates neurite outgrowth in PC12 cells. FEBS Letters, 1994, 351, 335-339.	2.8	14
162	Model Building Predicts an Additional Conformational Switch when GTP Binds to the CDC42HS Protein. Protein and Peptide Letters, 1994, 1, 84-91.	0.9	6

#	Article	IF	CITATIONS
163	Identification of a novel protein with GDP dissociation inhibitor activity for the ras-like proteins CDC42Hs and Rac 1. Genes Chromosomes and Cancer, 1993, 8, 253-261.	2.8	42
164	Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbloncogene product. Nature, 1991, 354, 311-314.	27.8	437
165	The Mammalian β-Adrenergic Receptor: Structural and Functional Characterization of the Carbohydrate Moiety. Journal of Receptors and Signal Transduction, 1987, 7, 257-281.	1.2	31
166	A role for Ni in the hormonal stimulation of adenylate cyclase. Nature, 1985, 318, 293-295.	27.8	107
167	Pure β-adrenergic receptor: the single polypeptide confers catecholamine responsiveness to adenylate cyclase. Nature, 1983, 306, 562-566.	27.8	117