Stefan A Laufer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/934192/publications.pdf

Version: 2024-02-01

382 papers 13,208 citations

20817 60 h-index 98 g-index

410 all docs

410 docs citations

410 times ranked

18586 citing authors

#	Article	IF	Citations
1	Skepinone-L, a Novel Potent and Highly Selective Inhibitor of p38 MAP Kinase, Effectively Impairs Platelet Activation and Thrombus Formation. Cellular Physiology and Biochemistry, 2013, 31, 914-924.	1.6	1,301
2	Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacological Research, 2020, 157, 104859.	7.1	426
3	Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. Journal of Medicinal Chemistry, 2019, 62, 5673-5724.	6.4	415
4	Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts. Journal of Ethnopharmacology, 2009, 126, 463-467.	4.1	259
5	Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: Sex-dependent microglial signaling in the spinal cord. Brain, Behavior, and Immunity, 2016, 55, 70-81.	4.1	253
6	In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nature Medicine, 2014, 20, 1138-1146.	30.7	242
7	A MYC–aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer. Nature Medicine, 2016, 22, 744-753.	30.7	207
8	The Cysteinome of Protein Kinases as a Target in Drug Development. Angewandte Chemie - International Edition, 2018, 57, 4372-4385.	13.8	173
9	Tetrasubstituted Imidazole Inhibitors of Cytokine Release:  Probing Substituents in the N-1 Position. Journal of Medicinal Chemistry, 2004, 47, 6311-6325.	6.4	163
10	Licofelone Suppresses Prostaglandin E ₂ Formation by Interference with the Inducible Microsomal Prostaglandin E ₂ Synthase-1. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 975-982.	2.5	156
11	The inhibition of subchondral bone resorption in the early phase of experimental dog osteoarthritis by licofelone is associated with a reduction in the synthesis of MMP-13 and cathepsin K. Bone, 2004, 34, 527-538.	2.9	143
12	Protective effects of licofelone, a 5-lipoxygenase and cyclo-oxygenase inhibitor, versus naproxen on cartilage loss in knee osteoarthritis: a first multicentre clinical trial using quantitative MRI. Annals of the Rheumatic Diseases, 2009, 68, 938-947.	0.9	143
13	Anti-inflammatory drugs: new multitarget compounds to face an old problem. The dual inhibition concept. Pharmacological Research, 2001, 43, 429-436.	7.1	139
14	New Approaches to the Treatment of Inflammatory Disorders Small Molecule inhibitors of p38 MAP Kinase. Current Topics in Medicinal Chemistry, 2006, 6, 113-149.	2.1	136
15	ILâ€1β, ILâ€18, and eicosanoids promote neutrophil recruitment to poreâ€induced intracellular traps following pyroptosis. European Journal of Immunology, 2016, 46, 2761-2766.	2.9	135
16	Progress towards a public chemogenomic set for protein kinases and a call for contributions. PLoS ONE, 2017, 12, e0181585.	2.5	131
17	Accelerated Clearance of Plasmodium-infected Erythrocytes in Sickle Cell Trait and Annexin-A7 Deficiency. Cellular Physiology and Biochemistry, 2009, 24, 415-428.	1.6	128
18	PGE2 in the regulation of programmed erythrocyte death. Cell Death and Differentiation, 2005, 12, 415-428.	11.2	126

#	Article	IF	CITATIONS
19	Small molecular anti-cytokine agents. Medicinal Research Reviews, 2006, 26, 1-62.	10.5	120
20	(6,7-Diaryldihydropyrrolizin-5-yl)acetic Acids, a Novel Class of Potent Dual Inhibitors of Both Cyclooxygenase and 5-Lipoxygenase. Journal of Medicinal Chemistry, 1994, 37, 1894-1897.	6.4	118
21	Proteasome Activation by Small Molecules. Cell Chemical Biology, 2017, 24, 725-736.e7.	5.2	113
22	Skepinone-L is a selective p38 mitogen-activated protein kinase inhibitor. Nature Chemical Biology, 2012, 8, 141-143.	8.0	109
23	Novel 2-chloro-4-anilino-quinazoline derivatives as EGFR and VEGFR-2 dual inhibitors. European Journal of Medicinal Chemistry, 2014, 71, 1-14.	5.5	109
24	Structural Approaches to Explain the Selectivity of COX-2 Inhibitors: Is There a Common Pharmacophore?. Current Medicinal Chemistry, 2000, 7, 1101-1112.	2.4	108
25	Novel Substituted Pyridinyl Imidazoles as Potent Anticytokine Agents with Low Activity against Hepatic Cytochrome P450 Enzymes. Journal of Medicinal Chemistry, 2003, 46, 3230-3244.	6.4	108
26	Biological studies on Brazilian plants used in wound healing. Journal of Ethnopharmacology, 2009, 122, 523-532.	4.1	107
27	Fighting cancer drug resistance: Opportunities and challenges for mutation-specific EGFR inhibitors. Drug Resistance Updates, 2015, 20, 12-28.	14.4	103
28	In vivo dual inhibition of cyclooxygenase and lipoxygenase by ML-3000 reduces the progression of experimental osteoarthritis: Suppression of collagenase 1 and interleukin-1? synthesis. Arthritis and Rheumatism, 2001, 44, 2320-2330.	6.7	100
29	COX-3: just another COX or the solitary elusive target of paracetamol?. Lancet, The, 2003, 361, 981-982.	13.7	99
30	Selective JAK3 Inhibitors with a Covalent Reversible Binding Mode Targeting a New Induced Fit Binding Pocket. Cell Chemical Biology, 2016, 23, 1335-1340.	5.2	96
31	Flavonoids Inhibit COX-1 and COX-2 Enzymes and Cytokine/Chemokine Production in Human Whole Blood. Inflammation, 2015, 38, 858-870.	3.8	92
32	Studies on the Anti-Inflammatory Activity of Phytopharmaceuticals Prepared from Arnica Flowers1. Planta Medica, 2002, 68, 385-391.	1.3	91
33	Synthesis and Biological Testing of Purine Derivatives as Potential ATP-Competitive Kinase Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 710-722.	6.4	89
34	Licofelone, a dual COX/5-LOX inhibitor, induces apoptosis in HCA-7 colon cancer cells through the mitochondrial pathway independently from its ability to affect the arachidonic acid cascade. Carcinogenesis, 2008, 29, 371-380.	2.8	87
35	The Gastrointestinal Tolerability of the LOX/COX Inhibitor, Licofelone, is Similar to Placebo and Superior to Naproxen Therapy in Healthy Volunteers: Results From a Randomized, Controlled Trial. American Journal of Gastroenterology, 2004, 99, 611-618.	0.4	83
36	Design, Synthesis, and Biological Evaluation of Novel 3-Aryl-4-(1 <i>H</i> -indole-3yl)-1,5-dihydro-2 <i>H</i> -pyrrole-2-ones as Vascular Endothelial Growth Factor Receptor (VEGF-R) Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 3814-3824.	6.4	82

#	Article	IF	Citations
37	Metabonomics in cancer diagnosis: mass spectrometry-based profiling of urinary nucleosides from breast cancer patients. Biomarkers, 2008, 13, 435-449.	1.9	81
38	Three-Component Combinatorial Synthesis of Novel Dihydropyrano[2,3- <i>c</i>)pyrazoles. ACS Combinatorial Science, 2008, 10, 364-367.	3.3	81
39	Inhibitors of c-Jun N-Terminal Kinases: An Update. Journal of Medicinal Chemistry, 2015, 58, 72-95.	6.4	81
40	Arachidonoyl-phosphatidylcholine oscillates during the cell cycle and counteracts proliferation by suppressing Akt membrane binding. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2546-2551.	7.1	80
41	Donated chemical probes for open science. ELife, 2018, 7, .	6.0	80
42	Why Antidiabetic Vanadium Complexes are Not in the Pipeline of "Big Pharma―Drug Research? A Critical Review. Current Medicinal Chemistry, 2016, 23, 2874-2891.	2.4	78
43	Design, Synthesis, and Biological Evaluation of Novel Tri- and Tetrasubstituted Imidazoles as Highly Potent and Specific ATP-Mimetic Inhibitors of p38 MAP Kinase: Focus on Optimized Interactions with the Enzyme's Surface-Exposed Front Region. Journal of Medicinal Chemistry, 2008, 51, 4122-4149.	6.4	77
44	Trisubstituted Pyridinylimidazoles as Potent Inhibitors of the Clinically Resistant L858R/T790M/C797S EGFR Mutant: Targeting of Both Hydrophobic Regions and the Phosphate Binding Site. Journal of Medicinal Chemistry, 2017, 60, 5613-5637.	6.4	77
45	Lung Cancer: EGFR Inhibitors with Low Nanomolar Activity against a Therapyâ€Resistant L858R/T790M/C797S Mutant. Angewandte Chemie - International Edition, 2016, 55, 10890-10894.	13.8	76
46	Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. Journal of Clinical Investigation, 2017, 127, 3167-3176.	8.2	75
47	Targeting the Gatekeeper MET146 of C-Jun N-Terminal Kinase 3 Induces a Bivalent Halogen/Chalcogen Bond. Journal of the American Chemical Society, 2015, 137, 14640-14652.	13.7	73
48	Impact of Membrane Drug Transporters on Resistance to Small-Molecule Tyrosine Kinase Inhibitors. Trends in Pharmacological Sciences, 2016, 37, 904-932.	8.7	72
49	Tri- and Tetrasubstituted Pyrazole Derivates: Regioisomerism Switches Activity from p38MAP Kinase to Important Cancer Kinases. Journal of Medicinal Chemistry, 2012, 55, 961-965.	6.4	70
50	Inhibition of GSK3 differentially modulates NF- \hat{l}^{P} B, CREB, AP-1 and \hat{l}^{2} -catenin signaling in hepatocytes, but fails to promote TNF- \hat{l}^{\pm} -induced apoptosis. Experimental Cell Research, 2008, 314, 1351-1366.	2.6	69
51	Ones, Thiones, andN-Oxides: An Exercise in Imidazole Chemistry. Angewandte Chemie - International Edition, 2002, 41, 2290-2293.	13.8	68
52	Imidazole Inhibitors of Cytokine Release:Â Probing Substituents in the 2 Position. Journal of Medicinal Chemistry, 2002, 45, 4695-4705.	6.4	67
53	Targeting the Ribose and Phosphate Binding Site of p38 Mitogen-Activated Protein (MAP) Kinase: Synthesis and Biological Testing of 2-Alkylsulfanyl-, 4(5)-Aryl-, 5(4)-Heteroaryl-Substituted Imidazoles. Journal of Medicinal Chemistry, 2008, 51, 5630-5640.	6.4	66
54	Prediction of breast cancer by profiling of urinary RNA metabolites using Support Vector Machine-based feature selection. BMC Cancer, 2009, 9, 104.	2.6	65

#	Article	IF	CITATIONS
55	Study of the role of leukotriene B4 in abnormal function of human subchondral osteoarthritis osteoblasts: Effects of cyclooxygenase and/or 5-lipoxygenase inhibition. Arthritis and Rheumatism, 2002, 46, 1804-1812.	6.7	64
56	MALDI-TOF MS analysis of urinary nucleosides. Journal of the American Society for Mass Spectrometry, 2005, 16, 940-947.	2.8	64
57	Arylpyrrolizines as Inhibitors of Microsomal Prostaglandin E ₂ Synthase-1 (mPGES-1) or as Dual Inhibitors of mPGES-1 and 5-Lipoxygenase (5-LOX). Journal of Medicinal Chemistry, 2009, 52, 4968-4972.	6.4	64
58	3,4-Diaryl-isoxazoles and -imidazoles as Potent Dual Inhibitors of p38 \hat{i} ± Mitogen Activated Protein Kinase and Casein Kinase 1 \hat{i} ′. Journal of Medicinal Chemistry, 2009, 52, 7618-7630.	6.4	64
59	Design and Development of Microsomal Prostaglandin E ₂ Synthase-1 Inhibitors: Challenges and Future Directions. Journal of Medicinal Chemistry, 2016, 59, 5970-5986.	6.4	63
60	Triggering of Suicidal Erythrocyte Death by Ruxolitinib. Cellular Physiology and Biochemistry, 2015, 37, 768-778.	1.6	62
61	Abietane diterpenes induce cytotoxic effects in human pancreatic cancer cell line MIA PaCa-2 through different modes of action. Phytochemistry, 2012, 78, 107-119.	2.9	60
62	COXâ€3—a virtual pain target in humans?. FASEB Journal, 2003, 17, 2174-2175.	0.5	59
63	Mass spectrometric identification of modified urinary nucleosides used as potential biomedical markers by LC–ITMS coupling. Analytical and Bioanalytical Chemistry, 2005, 382, 1017-1026.	3.7	58
64	Role of eicosanoids in structural degradation in osteoarthritis. Current Opinion in Rheumatology, 2003, 15, 623-627.	4.3	57
65	Antitubercular Isoniazid and Drug Resistance of Mycobacterium tuberculosis — A Review. Archiv Der Pharmazie, 2002, 335, 511-525.	4.1	56
66	Regulation of the expression of 5-lipoxygenase-activating protein/5-lipoxygenase and the synthesis of leukotriene B4 in osteoarthritic chondrocytes: Role of transforming growth factor? and eicosanoids. Arthritis and Rheumatism, 2004, 50, 3925-3933.	6.7	56
67	The protective effect of licofelone on experimental osteoarthritis is correlated with the downregulation of gene expression and protein synthesis of several major cartilage catabolic factors: MMP-13, cathepsin K and aggrecanases. Arthritis Research and Therapy, 2005, 7, R1091.	3.5	56
68	Trisubstituted Imidazoles with a Rigidized Hinge Binding Motif Act As Single Digit nM Inhibitors of Clinically Relevant EGFR L858R/T790M and L858R/T790M/C797S Mutants: An Example of Target Hopping. Journal of Medicinal Chemistry, 2017, 60, 4636-4656.	6.4	56
69	Triggering of Suicidal Erythrocyte Death Following Boswellic Acid Exposure. Cellular Physiology and Biochemistry, 2015, 37, 131-142.	1.6	55
70	p38 MAPK inhibitors: a patent review (2012 – 2013). Expert Opinion on Therapeutic Patents, 2014, 24, 535-554.	5.0	53
71	An updated patent review of p38 MAP kinase inhibitors (2014-2019). Expert Opinion on Therapeutic Patents, 2020, 30, 453-466.	5.0	53
72	Synthesis of interleukin 1beta, tumor necrosis factor-alpha, and interstitial collagenase (MMP-1) is eicosanoid dependent in human osteoarthritis synovial membrane explants: interactions with antiinflammatory cytokines. Journal of Rheumatology, 2002, 29, 546-53.	2.0	52

#	Article	IF	CITATIONS
73	Implications for selectivity of 3,4-diarylquinolinones as p38î±MAP kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1431-1435.	2.2	48
74	A smartphone readout system for gold nanoparticle-based lateral flow assays: application to monitoring of digoxigenin. Mikrochimica Acta, 2019, 186, 119.	5.0	48
75	Kinases as Potential Therapeutic Targets for Anti-coronaviral Therapy. Journal of Medicinal Chemistry, 2022, 65, 955-982.	6.4	48
76	Discovery and development of ML3000. Inflammopharmacology, 2001, 9, 101-112.	3.9	47
77	From Imidazoles to Pyrimidines:  New Inhibitors of Cytokine Release. Journal of Medicinal Chemistry, 2002, 45, 2733-2740.	6.4	47
78	Fucoxanthin Induced Suicidal Death of Human Erythrocytes. Cellular Physiology and Biochemistry, 2015, 37, 2464-2475.	1.6	47
79	c-Jun <i>N</i> i>-terminal kinase inhibitors: a patent review (2010 – 2014). Expert Opinion on Therapeutic Patents, 2015, 25, 849-872.	5.0	47
80	Are Vanadium Compounds Drugable? Structures and Effects of Antidiabetic Vanadium Compounds: A Critical Review. Mini-Reviews in Medicinal Chemistry, 2005, 5, 995-1008.	2.4	46
81	Novel Lead Structures for p38 MAP Kinase via FieldScreen Virtual Screening. Journal of Medicinal Chemistry, 2009, 52, 4200-4209.	6.4	46
82	Tri- and Tetrasubstituted Pyridinylimidazoles as Covalent Inhibitors of c-Jun N-Terminal Kinase 3. Journal of Medicinal Chemistry, 2017, 60, 594-607.	6.4	46
83	Development, Optimization, and Structure–Activity Relationships of Covalent-Reversible JAK3 Inhibitors Based on a Tricyclic Imidazo[5,4- <i>d</i>]pyrrolo[2,3- <i>b</i>]pyridine Scaffold. Journal of Medicinal Chemistry, 2018, 61, 5350-5366.	6.4	46
84	Catechin Derivatives from <i>Parapiptadenia rigida</i> with <i>in Vitro</i> Wound-Healing Properties. Journal of Natural Products, 2010, 73, 2035-2041.	3.0	45
85	An immunosorbent, nonradioactive p38 MAP kinase assay comparable to standard radioactive liquid-phase assays. Analytical Biochemistry, 2005, 344, 135-137.	2.4	43
86	<i>Tetra</i> -Substituted Pyridinylimidazoles As Dual Inhibitors of p38 \hat{i} ± Mitogen-Activated Protein Kinase and c-Jun <i>N</i> -Terminal Kinase 3 for Potential Treatment of Neurodegenerative Diseases. Journal of Medicinal Chemistry, 2015, 58, 443-456.	6.4	43
87	From Five- to Six-Membered Rings:  3,4-Diarylquinolinone as Lead for Novel p38MAP Kinase Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 1213-1221.	6.4	42
88	Bioinformatical evaluation of modified nucleosides as biomedical markers in diagnosis of breast cancer. Analytica Chimica Acta, 2008, 618, 29-34.	5.4	41
89	Design, Synthesis, and Biological Evaluation of Phenylamino-Substituted 6,11-Dihydro-dibenzo[b,e]oxepin-11-ones and Dibenzo[a,d]cycloheptan-5-ones:Â Novel p38 MAP Kinase Inhibitors. Journal of Medicinal Chemistry, 2006, 49, 7912-7915.	6.4	40
90	Are MAP Kinases Drug Targets? Yes, but Difficult Ones. ChemMedChem, 2007, 2, 1116-1140.	3.2	40

#	Article	IF	CITATIONS
91	Metabolic signature of breast cancer cell line MCF-7: profiling of modified nucleosides via LC-IT MS coupling. BMC Biochemistry, 2007, 8, 25.	4.4	40
92	Successful Structure-Based Design of Recent p38 MAP Kinase Inhibitors. Current Topics in Medicinal Chemistry, 2009, 9, 655-676.	2.1	40
93	Identification of urinary modified nucleosides and ribosylated metabolites in humans via combined ESI-FTICR MS and ESI-IT MS analysis. Journal of the American Society for Mass Spectrometry, 2008, 19, 1500-1513.	2.8	38
94	Modified Acidic Nonsteroidal Anti-Inflammatory Drugs as Dual Inhibitors of mPGES-1 and 5-LOX. Journal of Medicinal Chemistry, 2012, 55, 8958-8962.	6.4	38
95	Optimization of a nonradioactive immunosorbent assay for p38α mitogen-activated protein kinase activity. Analytical Biochemistry, 2010, 406, 233-234.	2.4	37
96	Identification of Regioisomers in a Series of N-Substituted Pyridin-4-yl Imidazole Derivatives by Regiospecific Synthesis, GC/MS, and 1H NMR. Journal of Organic Chemistry, 2003, 68, 4527-4530.	3.2	36
97	Sesquiterpene lactones as inhibitors of IL-8 expression in HeLa cells. Bioorganic and Medicinal Chemistry, 2006, 14, 2487-2497.	3.0	36
98	Stimulation of Suicidal Erythrocyte Death by Lipoxygenase Inhibitor Bay-Y5884. Cellular Physiology and Biochemistry, 2006, 18, 233-242.	1.6	36
99	IL- $1\hat{l}^2$ Regulates FHL2 and Other Cytoskeleton-Related Genes in Human Chondrocytes. Molecular Medicine, 2008, 14, 150-159.	4.4	36
100	Tri- and tetrasubstituted imidazoles as p38 \hat{l} ± mitogen-activated protein kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6671-6675.	2.2	36
101	Targeting the Hinge Glycine Flip and the Activation Loop: Novel Approach to Potent p38α Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 7862-7874.	6.4	36
102	Role of p38 mitogenâ€activated protein kinase in linking stearoylâ€CoA desaturaseâ€1 activity with endoplasmic reticulum homeostasis. FASEB Journal, 2015, 29, 2439-2449.	0.5	35
103	Natural chromones as potential anti-inflammatory agents: Pharmacological properties and related mechanisms. International Immunopharmacology, 2019, 72, 31-39.	3.8	35
104	Small-Molecule Thioesters as SARS-CoV-2 Main Protease Inhibitors: Enzyme Inhibition, Structureâ€"Activity Relationships, Antiviral Activity, and X-ray Structure Determination. Journal of Medicinal Chemistry, 2022, 65, 9376-9395.	6.4	35
105	Analysis of the precision and sensitivity to change of different approaches to assess cartilage loss by quantitative MRI in a longitudinal multicentre clinical trial in knee osteoarthritis patients. Arthritis Research and Therapy, 2008, 10, R129.	3.5	34
106	Biological Evaluation and Structural Determinants of p38α Mitogenâ€Activatedâ€Protein Kinase and câ€Junâ€Nâ€Terminal Kinase 3 Inhibition by Flavonoids. ChemBioChem, 2010, 11, 2579-2588.	2.6	34
107	The decrease of cell membrane fluidity by the non-steroidal anti-inflammatory drug Licofelone inhibits epidermal growth factor receptor signalling and triggers apoptosis in HCA-7 colon cancer cells. Cancer Letters, 2012, 321, 187-194.	7.2	34
108	Fine-tuned PEGylation of chitosan to maintain optimal siRNA-nanoplex bioactivity. Carbohydrate Polymers, 2016, 143, 25-34.	10.2	34

#	Article	IF	CITATIONS
109	Towards the improvement of the synthesis of novel 4(5)-aryl-5(4)-heteroaryl-2-thio-substituted imidazoles and their p38 MAP kinase inhibitory activity. Organic and Biomolecular Chemistry, 2008, 6, 437-439.	2.8	33
110	Structural Basis for EGFR Mutant Inhibition by Trisubstituted Imidazole Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 4293-4305.	6.4	33
111	Isoxazolone Based Inhibitors of p38 MAP Kinases. Journal of Medicinal Chemistry, 2008, 51, 2580-2584.	6.4	32
112	Role of the Hydrogen Bonding Heteroatomâ°'Lys53 Interaction between the p38α Mitogen-Activated Protein (MAP) Kinase and Pyridinyl-Substituted 5-Membered Heterocyclic Ring Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 2613-2617.	6.4	32
113	Design and Synthesis of Tricyclic JAK3 Inhibitors with Picomolar Affinities as Novel Molecular Probes. ChemMedChem, 2014, 9, 277-281.	3.2	32
114	Recent advances in JAK3 inhibition: Isoform selectivity by covalent cysteine targeting. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4229-4237.	2.2	32
115	Substituted Isoxazoles as Potent Inhibitors of p38 MAP Kinase. ChemMedChem, 2006, 1, 197-207.	3.2	31
116	Design, Synthesis, and Biological Evaluation of Novel Disubstituted Dibenzosuberones as Highly Potent and Selective Inhibitors of p38 Mitogen Activated Protein Kinase. Journal of Medicinal Chemistry, 2012, 55, 5868-5877.	6.4	31
117	Dibenzosuberones as p38 Mitogen-Activated Protein Kinase Inhibitors with Low ATP Competitiveness and Outstanding Whole Blood Activity. Journal of Medicinal Chemistry, 2013, 56, 241-253.	6.4	31
118	Induction but not inhibition of COX-2 confers human lung cancer cell apoptosis by celecoxib. Journal of Lipid Research, 2013, 54, 3116-3129.	4.2	31
119	Profile and Molecular Modeling of 3-(Indole-3-yl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole-2,5dione (1) as a Highly Selective VEGF-R2/3 Inhibitor. Journal of Medicinal Chemistry, 2006, 49, 7549-7553.	6.4	29
120	2â€Acylaminopyridinâ€4â€ylimidazoles as p38 MAP Kinase Inhibitors: Design, Synthesis, and Biological and Metabolic Evaluations. ChemMedChem, 2009, 4, 1939-1948.	3.2	29
121	Rapid and easy access to indoles via microwave-assisted Hemetsberger–Knittel synthesis. Tetrahedron Letters, 2009, 50, 1708-1709.	1.4	29
122	Stimulating Effect of Sclareol on Suicidal Death of Human Erythrocytes. Cellular Physiology and Biochemistry, 2016, 39, 554-564.	1.6	29
123	Selective p38α MAP kinase/MAPK14 inhibition in enzymatically modified LDLâ€stimulated human monocytes: implications for atherosclerosis. FASEB Journal, 2017, 31, 674-686.	0.5	29
124	A concise and optimized four-step approach toward 2-(aryl-)alkylsulfanyl-, 4(5)-aryl-, 5(4)-heteroaryl-substituted imidazoles using alkyl- or arylalkyl thiocyanates. Tetrahedron Letters, 2006, 47, 7199-7203.	1.4	28
125	Novel p38 MAPK inhibitor ML3403 has potent anti-inflammatory activity in airway smooth muscle. European Journal of Pharmacology, 2010, 635, 212-218.	3.5	28
126	Pyridinylquinoxalines and Pyridinylpyridopyrazines as Lead Compounds for Novel p38α Mitogen-Activated Protein Kinase Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 1128-1137.	6.4	28

#	Article	IF	CITATIONS
127	A Frozen Analogue Approach to Aminopyridinylimidazoles Leading to Novel and Promising p38 MAP Kinase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 8429-8439.	6.4	28
128	Novel Hingeâ€Binding Motifs for Janus Kinaseâ€3 Inhibitors: A Comprehensive Structure–Activity Relationship Study on Tofacitinib Bioisosteres. ChemMedChem, 2014, 9, 2516-2527.	3.2	28
129	A novel scaffold for EGFR inhibition: Introducing N-(3-(3-phenylureido)quinoxalin-6-yl) acrylamide derivatives. Scientific Reports, 2019, 9, 14.	3.3	28
130	c-Jun N-Terminal Kinase Inhibitors as Potential Leads for New Therapeutics for Alzheimer's Diseases. International Journal of Molecular Sciences, 2020, 21, 9677.	4.1	28
131	Osteoarthritis therapy-are there still unmet needs?. British Journal of Rheumatology, 2004, 43, 9i-15.	2.3	27
132	Identification of rosmarinic acid as the major active constituent in Cordia americana. Journal of Ethnopharmacology, 2010, 128, 561-566.	4.1	27
133	A Multicomponent Carbaâ€Betti Strategy to Alkylidene Heterodimers – Total Synthesis and Structure–Activity Relationships of Arzanol. European Journal of Organic Chemistry, 2012, 2012, 772-779.	2.4	27
134	LXRα activation and Raf inhibition trigger lethal lipotoxicity in liver cancer. Nature Cancer, 2021, 2, 201-217.	13.2	27
135	Metabolically Stable Dibenzo[<i>b</i> , <i>e</i>]oxepin-11(6 <i>H</i>)-ones as Highly Selective p38 MAP Kinase Inhibitors: Optimizing Anti-Cytokine Activity in Human Whole Blood. Journal of Medicinal Chemistry, 2013, 56, 8561-8578.	6.4	26
136	Click Chemistry: Novel Applications in Cell Biology and Drug Discovery. Angewandte Chemie - International Edition, 2017, 56, 15504-15505.	13.8	26
137	Pyridinylimidazoles as dual glycogen synthase kinase $3\hat{l}^2/p38\hat{l}\pm$ mitogen-activated protein kinase inhibitors. European Journal of Medicinal Chemistry, 2019, 175, 309-329.	5.5	26
138	Synthesis and Evaluation of a Novel Series of Pyrrolizine Derivatives as Dual Cyclooxygenase-1 and 5-Lipoxygenase Inhibitors. Archiv Der Pharmazie, 1997, 330, 307-312.	4.1	25
139	An in-vitro screening assay for the detection of inhibitors of proinflammatory cytokine synthesis: a useful tool for the development of new antiarthritic and disease modifying drugs. Osteoarthritis and Cartilage, 2002, 10, 961-967.	1.3	25
140	Dynamics in the p38αâ€MAPâ€Kinase–SB203580 Complex Observed by Liquid tate NMR Spectroscopy. Angewandte Chemie - International Edition, 2008, 47, 3548-3551.	13.8	25
141	Aza-Analogue Dibenzepinone Scaffolds as p38 Mitogen-Activated Protein Kinase Inhibitors: Design, Synthesis, and Biological Data of Inhibitors with Improved Physicochemical Properties. Journal of Medicinal Chemistry, 2009, 52, 1778-1782.	6.4	25
142	Chiral Sulfoxides as Metabolites of 2-Thioimidazole-Based p38α Mitogen-Activated Protein Kinase Inhibitors: Enantioselective Synthesis and Biological Evaluation. Journal of Medicinal Chemistry, 2011, 54, 3283-3297.	6.4	25
143	Design, synthesis and SAR of phenylamino-substituted 5,11-dihydro-dibenzo[a,d]cyclohepten-10-ones and 11H-dibenzo[b,f]oxepin-10-ones as p38 MAP kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3074-3077.	2.2	24
144	Design, Synthesis and Structure–Activity Relationship of Functionalized Tetrahydroâ€ β arboline Derivatives as Novel PDE5 Inhibitors. Archiv Der Pharmazie, 2011, 344, 149-157.	4.1	24

#	Article	IF	CITATIONS
145	Assessing the Target Differentiation Potential of Imidazole-Based Protein Kinase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 11067-11071.	6.4	24
146	New Frontiers in Kinases: Second Generation Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 2167-2168.	6.4	24
147	Antinociceptive, anti-inflammatory and gastroprotective effects of a hydroalcoholic extract from the leaves of Eugenia punicifolia (Kunth) DC. in rodents. Journal of Ethnopharmacology, 2014, 157, 257-267.	4.1	24
148	Impact of p38 MAP Kinase Inhibitors on LPS-Induced Release of TNF-α in Whole Blood and Primary Cells from Different Species. Cellular Physiology and Biochemistry, 2015, 36, 2237-2249.	1.6	24
149	Design, Synthesis, and Biological Evaluation of Novel Type I ¹ / ₂ p38î± MAP Kinase Inhibitors with Excellent Selectivity, High Potency, and Prolonged Target Residence Time by Interfering with the R-Spine. Journal of Medicinal Chemistry, 2017, 60, 8027-8054.	6.4	24
150	Structural Optimization of a Pyridinylimidazole Scaffold: Shifting the Selectivity from p38α Mitogen-Activated Protein Kinase to c-Jun N-Terminal Kinase 3. ACS Omega, 2018, 3, 7809-7831.	3.5	24
151	Synthesis, Biological Testing, and Binding Mode Prediction of 6,9-Diarylpurin-8-ones as p38 MAP Kinase Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 2060-2066.	6.4	23
152	p38α mitogen-activated protein kinase inhibitors, a patent review (2005 – 2011). Expert Opinion on Therapeutic Patents, 2011, 21, 1843-1866.	5.0	23
153	A fraction of stem bark extract of Entada africana suppresses lipopolysaccharide-induced inflammation in RAW 264.7 cells. Journal of Ethnopharmacology, 2013, 149, 162-168.	4.1	23
154	Development of First Lead Structures for Phosphoinositide 3-Kinase-C2γ Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 212-221.	6.4	23
155	Controlling the Covalent Reactivity of a Kinase Inhibitor with Light. Angewandte Chemie - International Edition, 2021, 60, 20178-20183.	13.8	23
156	A Highly Selective In Vitro JNK3 Inhibitor, FMU200, Restores Mitochondrial Membrane Potential and Reduces Oxidative Stress and Apoptosis in SH-SY5Y Cells. International Journal of Molecular Sciences, 2021, 22, 3701.	4.1	22
157	Pharmacokinetics of ML3403 ({4-[5-(4-Fluorophenyl)-2-methylsulfanyl-3H-imidazol-4-yl]-pyridin-2-yl}-(1-phenylethyl)-amine), a 4-Pyridinylimidazole-Type p38 Mitogen-Activated Protein Kinase Inhibitor. Drug Metabolism and Disposition, 2007, 35, 875-883.	3.3	21
158	A direct ELISA assay for quantitative determination of the inhibitory potency of small molecules inhibitors for JNK3. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 236-240.	2.8	21
159	Discovery of Novel Orally Active Anti-Inflammatory N-Phenylpyrazolyl-N-Glycinyl-Hydrazone Derivatives That Inhibit TNF-1± Production. PLoS ONE, 2012, 7, e46925.	2.5	21
160	Mechanistic role of p38 MAPK in gastric cancer dissemination in a rodent model peritoneal metastasis. European Journal of Pharmacology, 2012, 674, 143-152.	3.5	21
161	Regiospecific and Highly Flexible Synthesis of 1,4,5-Trisubstituted 2-Sulfanylimidazoles from Structurally Diverse Ethanone Precursors. Synthesis, 2008, 2008, 253-266.	2.3	20
162	Optimized Target Residence Time: Typeâ€I Inhibitors for p38α MAP Kinase with Improved Binding Kinetics through Direct Interaction with the Râ€Spine. Angewandte Chemie - International Edition, 2017, 56, 5363-5367.	13.8	20

#	Article	IF	CITATIONS
163	Antimicrobial and antileukemic effects: in vitro activity of <i>Calyptranthes grandifolia</i> leaf extract. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2020, 83, 289-301.	2.3	20
164	Colocalization of the VEGFâ€R2 and the common ILâ€3/GMâ€CSF receptor beta chain to lipid rafts leads to enhanced p38 activation. British Journal of Haematology, 2009, 145, 399-411.	2.5	19
165	Fluorescence polarization binding assay to develop inhibitors of inactive p38α mitogen-activated protein kinase. Analytical Biochemistry, 2010, 401, 125-133.	2.4	19
166	One-Pot Synthesis of 4,6-Diaryl-2-oxo(imino)-1,2-dihydropyridine-3-carbonitrile; a New Scaffold for p38 \hat{l} ± MAP Kinase Inhibition. ACS Combinatorial Science, 2010, 12, 559-565.	3.3	19
167	In Vivo Hypoxia PET Imaging Quantifies the Severity of Arthritic Joint Inflammation in Line with Overexpression of Hypoxia-Inducible Factor and Enhanced Reactive Oxygen Species Generation. Journal of Nuclear Medicine, 2017, 58, 853-860.	5.0	19
168	Quantitative determination of piritramide in human plasma and urine by off- and on-line solid-phase extraction liquid chromatography coupled to tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 275-283.	1.5	18
169	Entada africana fraction CH2Cl2/MEOH 5% inhibits inducible nitric oxide synthase and pro-inflammatory cytokines gene expression induced by lipopolysaccharide in microglia. BMC Complementary and Alternative Medicine, 2013, 13, 254.	3.7	18
170	Discovery of <i>N</i> -{4-[5-(4-Fluorophenyl)-3-methyl-2-methylsulfanyl-3 <i>H</i> -inidazol-4-yl]-pyridin-2-yl}-acetamide (CBS-3595), a Dual p38î± MAPK/PDE-4 Inhibitor with Activity against TNFî±-Related Diseases. Journal of Medicinal Chemistry, 2017, 60, 5290-5305.	6.4	18
171	Fast Iterative Synthetic Approach toward Identification of Novel Highly Selective p38 MAP Kinase Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 10757-10782.	6.4	18
172	Achiral–chiral LC/LC–MS/MS coupling for determination of chiral discrimination effects in phenprocoumon metabolism. Analytical Biochemistry, 2005, 339, 297-309.	2.4	17
173	SCISSORâ€"Spinal Cord Injury Study on Small molecule-derived Rho inhibition: a clinical study protocol. BMJ Open, 2016, 6, e010651.	1.9	17
174	Discovery of potent p38α MAPK inhibitors through a funnel like workflow combining in silico screening and inÂvitro validation. European Journal of Medicinal Chemistry, 2019, 182, 111624.	5 . 5	17
175	SARS-CoV-2 mutations in Brazil: from genomics to putative clinical conditions. Scientific Reports, 2021, 11, 11998.	3.3	17
176	A New In Vitro Model to Study Cellular Responses after Thermomechanical Damage in Monolayer Cultures. PLoS ONE, 2013, 8, e82635.	2.5	17
177	Decisive role of water and protein dynamics in residence time of p381± MAP kinase inhibitors. Nature Communications, 2022, 13, 569.	12.8	17
178	In Vitro Metabolism of 2-[6-(4-Chlorophenyl)-2,2-dimethyl-7-phenyl-2,3-dihydro-1H-pyrrolizin-5-yl] Acetic Acid (Licofelone, ML3000), an Inhibitor of Cyclooxygenase-1 and -2 and 5-Lipoxygenase. Drug Metabolism and Disposition, 2008, 36, 894-903.	3.3	16
179	Synthesis and Biological Testing of <i>N</i> â€Aminoimidazoleâ€Based p38α MAP Kinase Inhibitors. ChemMedChem, 2010, 5, 1134-1142.	3.2	16
180	Cysteine-type cathepsins promote the effector phase of acute cutaneous delayed-type hypersensitivity reactions. Theranostics, 2019, 9, 3903-3917.	10.0	16

#	Article	IF	CITATIONS
181	Duplex Shiny app quantification of the sepsis biomarkers C-reactive protein and interleukin-6 in a fast quantum dot labeled lateral flow assay. Journal of Nanobiotechnology, 2020, 18, 130.	9.1	16
182	Discovery of a Novel Class of Covalent Dual Inhibitors Targeting the Protein Kinases BMX and BTK. International Journal of Molecular Sciences, 2020, 21, 9269.	4.1	16
183	Neuroprotective Effect of Luteolin-7-O-Glucoside against 6-OHDA-Induced Damage in Undifferentiated and RA-Differentiated SH-SY5Y Cells. International Journal of Molecular Sciences, 2022, 23, 2914.	4.1	16
184	Synthesis and biological identification of the acyl glucuronide of the antiinflammatory drug ML-3000. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 903-906.	2.2	15
185	Mass spectrometric pathway monitoring of secondary metabolites: systematic analysis of culture extracts of Streptomyces species. Analytical Biochemistry, 2004, 335, 17-29.	2.4	15
186	Investigations of SCIO-469-like compounds for the inhibition of p38 MAP kinase. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1461-1464.	2.2	15
187	Unexpected Reaction of 2-Alkylsulfanylimidazoles to Imidazol-2-ones: Pyridinylimidazol-2-ones as Novel Potent p38α Mitogen-Activated Protein Kinase Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 4798-4802.	6.4	15
188	Different Methods for Testing Potential Cyclooxygenase-1 and Cyclooxygenase-2 Inhibitors. Methods in Molecular Biology, 2010, 644, 91-116.	0.9	15
189	Structural and Conformational Analysis of Proanthocyanidins from <i>Parapiptadenia rigida</i> and Their Wound-Healing Properties. Journal of Natural Products, 2011, 74, 1427-1436.	3.0	15
190	A direct enzyme-linked immunosorbent assay (ELISA) for the quantitative evaluation of Janus Kinase 3 (JAK3) inhibitors. Analytical Methods, 2014, 6, 8817-8822.	2.7	15
191	Interference of Boswellic Acids with the Ligand Binding Domain of the Glucocorticoid Receptor. Journal of Chemical Information and Modeling, 2014, 54, 978-986.	5.4	15
192	Design and synthesis of 1H-pyrazolo[3,4-b]pyridines targeting mitogen-activated protein kinase kinase 4 (MKK4) - A promising target for liver regeneration. European Journal of Medicinal Chemistry, 2021, 218, 113371.	5.5	15
193	Chemical Probes for Understudied Kinases: Challenges and Opportunities. Journal of Medicinal Chemistry, 2022, 65, 1132-1170.	6.4	15
194	Influence of willow bark extract on cyclooxygenase activity and on tumor necrosis factor [alpha] or interleukin 1[beta] release in vitro and ex vivo. Clinical Pharmacology and Therapeutics, 2003, 73, 272-274.	4.7	15
195	NO-Donors (VII [1]): Synthesis and Cyclooxygenase Inhibitory Properties of N-and S-Nitrooxypivaloyl-cysteine Derivatives of Naproxen $\hat{a} \in \mathbb{C}^n$ A Novel Type of NO-NSAID. Archiv Der Pharmazie, 2002, 335, 363-366.	4.1	14
196	Deoxyhypusine Hydroxylase from Plasmodium vivax, the Neglected Human Malaria Parasite: Molecular Cloning, Expression and Specific Inhibition by the 5-LOX Inhibitor Zileuton. PLoS ONE, 2013, 8, e58318.	2.5	14
197	The Pyrazolobenzothiazine Core as a New Chemotype of p38 Alpha Mitogenâ€Activated Protein Kinase Inhibitors. Chemical Biology and Drug Design, 2015, 86, 531-545.	3.2	14
198	Solution-Phase Parallel Synthesis of Ruxolitinib-Derived Janus Kinase Inhibitors via Copper-Catalyzed Azide–Alkyne Cycloaddition. ACS Combinatorial Science, 2015, 17, 5-10.	3.8	14

#	Article	IF	Citations
199	Myricetin inhibits panel of kinases implicated in tumorigenesis. Basic and Clinical Pharmacology and Toxicology, 2019, 125, 3-7.	2.5	14
200	Bioisosteric Replacement of Arylamide-Linked Spine Residues with $\langle i \rangle N \langle i \rangle$ -Acylhydrazones and Selenophenes as a Design Strategy to Novel Dibenzosuberone Derivatives as Type I 1/2 p38 \hat{l} ± MAP Kinase Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 7347-7354.	6.4	14
201	Design, Synthesis and Biological Evaluation of Novel Pyrazolo[1,2,4]triazolopyrimidine Derivatives as Potential Anticancer Agents. Molecules, 2021, 26, 4065.	3.8	14
202	Biosynthesis of iron oxide magnetic nanoparticles using clinically isolated Pseudomonas aeruginosa. Scientific Reports, 2021, 11, 20503.	3.3	14
203	Determination of(R)- and(S)-phenprocoumon in human plasma by enantioselective liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 458-464.	1.5	13
204	Design, synthesis and characterization of N9/N7-substituted 6-aminopurines as VEGF-R and EGF-R inhibitors. European Journal of Medicinal Chemistry, 2009, 44, 1788-1793.	5.5	13
205	Synthesis, p38 Kinase Inhibitory and Anti-inflammatory Activity of New Substituted Benzimidazole Derivatives. Medicinal Chemistry, 2013, 9, 91-99.	1.5	13
206	NB 06: From a simple lysosomotropic aSMase inhibitor to tools for elucidating the role of lysosomes in signaling apoptosis and LPS-induced inflammation. European Journal of Medicinal Chemistry, 2018, 153, 73-104.	5.5	13
207	Design of a "Two-in-One―Mutant-Selective Epidermal Growth Factor Receptor Inhibitor That Spans the Orthosteric and Allosteric Sites. Journal of Medicinal Chemistry, 2022, 65, 1370-1383.	6.4	13
208	ACKR3 regulates platelet activation and ischemia-reperfusion tissue injury. Nature Communications, 2022, 13, 1823.	12.8	13
209	Stereospecific pharmacokinetic characterisation of phenprocoumon metabolites, and mass-spectrometric identification of two novel metabolites in human plasma and liver microsomes. Analytical and Bioanalytical Chemistry, 2005, 383, 909-917.	3.7	12
210	Regulation of coronary venular barrier function by blood borne inflammatory mediators and pharmacological tools: insights from novel microvascular wall models. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H567-H581.	3.2	12
211	Drug Discovery: A Modern Decathlon. Angewandte Chemie - International Edition, 2013, 52, 4072-4076.	13.8	12
212	New insights into novel inhibitors against deoxyhypusine hydroxylase from plasmodium falciparum: compounds with an iron chelating potential. Amino Acids, 2015, 47, 1155-1166.	2.7	12
213	Neuromodulatory effects of Calyptranthes grandifolia extracts against 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Biomedicine and Pharmacotherapy, 2016, 84, 382-386.	5.6	12
214	Pyridinylimidazoles as GSK3β Inhibitors: The Impact of Tautomerism on Compound Activity via Water Networks. ACS Medicinal Chemistry Letters, 2019, 10, 1407-1414.	2.8	12
215	Selective targeting of the $\hat{l}\pm C$ and DFG-out pocket in p38 MAPK. European Journal of Medicinal Chemistry, 2020, 208, 112721.	5.5	12
216	Gefitinib-Tamoxifen Hybrid Ligands as Potent Agents against Triple-Negative Breast Cancer. Journal of Medicinal Chemistry, 2022, 65, 4616-4632.	6.4	12

#	Article	IF	CITATIONS
217	Inferential NMR/Xâ€rayâ€Based Structure Determination of a Dibenzo[<i>a</i> , <i>d</i>)cycloheptenone Inhibitor–p38α MAP Kinase Complex in Solution. Angewandte Chemie - International Edition, 2012, 51, 2359-2362.	13.8	11
218	Design, Synthesis and Biological Evaluation of 7-Chloro-9H-pyrimido [4,5-b] indole-based Glycogen Synthase Kinase- $3\hat{l}^2$ Inhibitors. Molecules, 2019, 24, 2331.	3.8	11
219	The European Federation for Medicinal Chemistry (EFMC) Best Practice Initiative: Validating Chemical Probes. ChemMedChem, 2020, 15, 2388-2390.	3.2	11
220	Mapping the S1 and S1' subsites of cysteine proteases with new dipeptidyl nitrile inhibitors as trypanocidal agents. PLoS Neglected Tropical Diseases, 2020, 14, e0007755.	3.0	11
221	Review of Trials Currently Testing Stem Cells for Treatment of Respiratory Diseases: Facts Known to Date and Possible Applications to COVID-19. Stem Cell Reviews and Reports, 2021, 17, 44-55.	3.8	11
222	Identification of new \hat{I}^3 -hydroxybutenolides that preferentially inhibit the activity of mPGES-1. Bioorganic and Medicinal Chemistry, 2012, 20, 5012-5016.	3.0	10
223	Efficacy and gastrointestinal tolerability of ML3403, a selective inhibitor of p38 MAP kinase and CBS-3595, a dual inhibitor of p38 MAP kinase and phosphodiesterase 4 in CFA-induced arthritis in rats. Rheumatology, 2014, 53, 425-432.	1.9	10
224	Tofacitinib and analogs as inhibitors of the histone kinase PRK1 (PKN1). Future Medicinal Chemistry, 2016, 8, 1537-1551.	2.3	10
225	From 2-Alkylsulfanylimidazoles to 2-Alkylimidazoles: An Approach towards Metabolically More Stable p38α MAP Kinase Inhibitors. Molecules, 2017, 22, 1729.	3.8	10
226	Evaluation of the therapeutic potential of the selective p38 MAPK inhibitor Skepinone-L and the dual p38/JNK 3 inhibitor LN 950 in experimental K/BxN serum transfer arthritis. Inflammopharmacology, 2019, 27, 1217-1227.	3.9	10
227	A Special View of What Was Almost Forgotten: p38δMAPK. Cancers, 2021, 13, 2077.	3.7	10
228	Current jakinibs for the treatment of rheumatoid arthritis: a systematic review. Inflammopharmacology, 2021, 29, 595-615.	3.9	10
229	Neuropsychiatric Disorders and COVID-19: What We Know So Far. Pharmaceuticals, 2021, 14, 933.	3.8	10
230	From Enzyme to Whole Blood: Sequential Screening Procedure for Identification and Evaluation of p38 MAPK Inhibitors. Methods in Molecular Biology, 2016, 1360, 123-148.	0.9	10
231	Publication Criteria and Requirements for Studies on Protein Kinase Inhibitors─What Is Expected?. Journal of Medicinal Chemistry, 2022, 65, 6973-6974.	6.4	10
232	Influence of p38MAPK inhibition on IL- $1\hat{l}^2$ -stimulated human chondrocytes: A microarray approach. International Journal of Molecular Medicine, 2009, 23, 685-93.	4.0	9
233	Four New Flavonol Glycosides from the Leaves of Brugmansia suaveolens. Molecules, 2014, 19, 6727-6736.	3.8	9
234	Advancing the Kinase Field: New Targets and Second Generation Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 1-1.	6.4	9

#	Article	lF	CITATIONS
235	Influence of annexin A7 on insulin sensitivity of cellular glucose uptake. Pflugers Archiv European Journal of Physiology, 2015, 467, 641-649.	2.8	9
236	Das Cysteinom der Proteinkinasen als Zielstruktur in der Arzneistoffentwicklung. Angewandte Chemie, 2018, 130, 4456-4470.	2.0	9
237	Addressing a Trapped High-Energy Water: Design and Synthesis of Highly Potent Pyrimidoindole-Based Glycogen Synthase Kinase- $3\hat{l}^2$ Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 1283-1301.	6.4	9
238	Development of the First Covalent Monopolar Spindle Kinase 1 (MPS1/TTK) Inhibitor. Journal of Medicinal Chemistry, 2022, 65, 3173-3192.	6.4	9
239	New Horizons in Drug Discovery - Understanding and Advancing Different Types of Kinase Inhibitors: Seven Years in Kinase Inhibitor Research with Impressive Achievements and New Future Prospects. Journal of Medicinal Chemistry, 2022, 65, 891-892.	6.4	9
240	The application of Stille cross-coupling reactions with multiple nitrogen containing heterocycles. Tetrahedron, 2011, 67, 9204-9213.	1.9	8
241	Effect of $TGF\hat{I}^2$ on calcium signaling in megakaryocytes. Biochemical and Biophysical Research Communications, 2015, 461, 8-13.	2.1	8
242	<i>In vitro</i> activities of <i>Ceiba speciosa</i> (A.StHil) Ravenna aqueous stem bark extract. Natural Product Research, 2019, 33, 3441-3444.	1.8	8
243	Visual aptamer-based capillary assay for ethanolamine using magnetic particles and strand displacement. Mikrochimica Acta, 2019, 186, 690.	5.0	8
244	Synthesis and structureâ€'activityâ€'relationship of 3,4â€'Diarylâ€'1Hâ€'pyrrolo[2,3â€'b]pyridines as irreversible Inhibitors of mutant EGFRâ€'L858R/T790M. European Journal of Pharmaceutical Sciences, 2019, 128, 91-96.	4.0	8
245	Neuroprotective potential of Myrciaria plinioides D. Legrand extract in an in vitro human neuroblastoma model. Inflammopharmacology, 2020, 28, 737-748.	3.9	8
246	From off-to on-target: New BRAF-inhibitor-template-derived compounds selectively targeting mitogen activated protein kinase kinase 4 (MKK4). European Journal of Medicinal Chemistry, 2021, 210, 112963.	5. 5	8
247	Conformational effects on potency of thioimidazoles and dihydrothiazolines. MedChemComm, 2011, 2, 261.	3.4	7
248	4-(4-Fluorophenyl)-1-(4-nitrophenyl)-3-(pyridin-4-yl)-1H-pyrazol-5-amine. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o633-o633.	0.2	7
249	Development of a p38Î mitogen activated protein kinase ELISA assay for the quantitative determination of inhibitor activity. Journal of Pharmaceutical and Biomedical Analysis, 2012, 66, 349-351.	2.8	7
250	Neue Anwendungen der Klickâ€Chemie in Zellbiologie und Wirkstoffentwicklung. Angewandte Chemie, 2017, 129, 15709-15711.	2.0	7
251	The European Federation for Medicinal Chemistry and Chemical Biology (EFMC) Best Practice Initiative: Phenotypic Drug Discovery. ChemMedChem, 2021, 16, 1737-1740.	3.2	7
252	Design and Synthesis of Highly Selective Brain Penetrant p38α Mitogen-Activated Protein Kinase Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 1225-1242.	6.4	7

#	Article	IF	CITATIONS
253	Synthesis, Characterization, and inâ€vivo Distribution of Intracellular Delivered Macrolide Shortâ€Chain Fatty Acid Derivatives. ChemMedChem, 2021, 16, 2254-2269.	3.2	7
254	A p38 Substrate-Specific MK2-EGFP Translocation Assay for Identification and Validation of New p38 Inhibitors in Living Cells: A Comprising Alternative for Acquisition of Cellular p38 Inhibition Data. PLoS ONE, 2014, 9, e95641.	2.5	7
255	5-(2-Aminoethyl)-3-aryl-5-phenylaminoisoxazole durch Ringtransformation von 2-Phenacylidenimidazolidinen. Synthesis, 1989, 1989, 12-15.	2.3	6
256	Effiziente Synthese neuer 2â€Cycloalk(en)ylâ€propansÃureâ€Derivate – mittlere und große Ringe als Bioisostere von Alkylphenylresten?. Angewandte Chemie, 1996, 108, 1312-1314.	2.0	6
257	Efficient Synthesis of New 2-Cycloalk(en)ylpropanoic Acid Derivativesâ€"Medium and Large Rings as Bioisosteres of Alkylphenyl Moieties?. Angewandte Chemie International Edition in English, 1996, 35, 1221-1223.	4.4	6
258	Modeling and Benchmark Data Set for the Inhibition of c-Jun N-terminal Kinase-3. Journal of Chemical Information and Modeling, 2011, 51, 670-679.	5.4	6
259	4-(4-Fluorophenyl)-1-phenyl-3-(pyridin-4-yl)-1H-pyrazol-5-amine. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, 0632-0632.	0.2	6
260	Modeling of Compound Profiling Experiments Using Support Vector Machines. Chemical Biology and Drug Design, 2014, 84, 75-85.	3.2	6
261	Lungenkrebs: EGFRâ€Inhibitoren mit hoher Wirksamkeit gegen die therapieresistente L858R/T790M/C797Sâ€Mutante Angewandte Chemie, 2016, 128, 11050-11054.	2.0	6
262	P38 Kinase, SGK1 and NF-κB Dependent Up-Regulation of Na+/Ca2+ Exchanger Expression and Activity Following TGFß1 Treatment of Megakaryocytes. Cellular Physiology and Biochemistry, 2017, 42, 2169-2181.	1.6	6
263	A Diverse and Versatile Regiospecific Synthesis of Tetrasubstituted Alkylsulfanylimidazoles as p38α Mitogen-Activated Protein Kinase Inhibitors. Molecules, 2018, 23, 221.	3.8	6
264	Discovery and Evaluation of Enantiopure 9H-pyrimido $[4,5-b]$ indoles as Nanomolar GSK- $3\hat{1}^2$ Inhibitors with Improved Metabolic Stability. International Journal of Molecular Sciences, 2020, 21, 7823.	4.1	6
265	The pre-clinical discovery and development of osimertinib used to treat non-small cell lung cancer. Expert Opinion on Drug Discovery, 2021, 16, 1091-1103.	5.0	6
266	Development and Optimization of a Non-Radioactive JNK3 Assay. Combinatorial Chemistry and High Throughput Screening, 2006, 9, 613-618.	1.1	5
267	Development of a Microsphere-Based p38α Kinase No-Wash Assay. Journal of Biomolecular Screening, 2006, 11, 528-536.	2.6	5
268	$(i \times n < i \times BuMg(O < i \times R < i \times)) < sub>2 < sub> und {Mg(O < i \times R < / i \times) < sub>2 < sub>2 < sub> (< i \times R < / i \times = 2,) Tj Magnesiumalkoholate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 730-732.$	ETQq0 0 0 1.2	rgBT /Overloc 5
269	Effect of TGFÎ ² on Na+/K+ ATPase activity in megakaryocytes. Biochemical and Biophysical Research Communications, 2014, 452, 537-541.	2.1	5
270	An aptamer based thermofluorimetric assay for ethanolamine. Biochimie, 2019, 158, 233-237.	2.6	5

#	Article	IF	CITATIONS
271	Kinase inhibitor data set for systematic analysis of representative kinases across the human kinome. Data in Brief, 2020, 32, 106189.	1.0	5
272	Design and synthesis of novel fluorescently labeled analogs of vemurafenib targeting MKK4. European Journal of Medicinal Chemistry, 2021, 209, 112901.	5.5	5
273	Discovery of a Potent and Highly Isoform-Selective Inhibitor of the Neglected Ribosomal Protein S6 Kinase Beta 2 (S6K2). Cancers, 2021, 13, 5133.	3.7	5
274	Development of novel urea-based ATM kinase inhibitors with subnanomolar cellular potency and high kinome selectivity. European Journal of Medicinal Chemistry, 2022, 235, 114234.	5.5	5
275	An optimized and versatile synthesis to pyridinylimidazole-type p $38\hat{l}\pm$ mitogen activated protein kinase inhibitors. Organic and Biomolecular Chemistry, 2015, 13, 10699-10704.	2.8	4
276	Are peptides a solution for the treatment of hyperactivated JAK3 pathways?. Inflammopharmacology, 2019, 27, 433-452.	3.9	4
277	New Horizons in Drug Discovery - Understanding and Advancing Kinase Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 7921-7922.	6.4	4
278	Identifying representative kinases for inhibitor evaluation via systematic analysis of compound-based target relationships. European Journal of Medicinal Chemistry, 2020, 204, 112641.	5.5	4
279	Development of a Selective Dual Discoidin Domain Receptor (DDR)/p38 Kinase Chemical Probe. Journal of Medicinal Chemistry, 2021, 64, 13451-13474.	6.4	4
280	tert-ButylN-(4-methyl-2-pyridyl)carbamate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2216-o2216.	0.2	4
281	Methacryloyl-GlcNAc Derivatives Copolymerized with Dimethacrylamide as a Novel Antibacterial and Biocompatible Coating. Pharmaceutics, 2021, 13, 1647.	4.5	4
282	Discrepancy in interactions and conformational dynamics of pregnaneÂXÂreceptor (PXR) bound to an agonist and a novel competitive antagonist. Computational and Structural Biotechnology Journal, 2022, 20, 3004-3018.	4.1	4
283	Pharmacokinetic Optimization of Small Molecule Janus Kinase 3 Inhibitors to Target Immune Cells. ACS Pharmacology and Translational Science, 2022, 5, 573-602.	4.9	4
284	Regioisomeric 5(3)-Aminomethyl-3(5)-phenylisoxazoles: Synthesis, Spectroscopic Discrimination, and Muscarinic Activity. Archiv Der Pharmazie, 1995, 328, 437-443.	4.1	3
285	(3RS,1SR)-3-Bromo-3-(1-phenylpropyl)chroman-2,4-dione. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o868-o869.	0.2	3
286	4-[5-(4-Fluorophenyl)-3-isopropylisoxazol-4-yl]pyridin-2(1H)-one. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o1423-o1425.	0.2	3
287	2-(4-Fluorophenyl)-N-{4-[6-(4-fluorophenyl)-2,3-dihydroimidazo[2,1-b][1,3]thiazol-5-yl]pyridin-2-yl}acetamide. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1132-o1132.	0.2	3
288	Alkoxymagnesium Iodide Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 3284-3287.	2.0	3

#	Article	IF	CITATIONS
289	Ethyl 5-amino-3-(pyridin-4-yl)-1-(2,4,6-trichlorophenyl)-1H-pyrazole-4-carboxylate dimethyl sulfoxide hemisolvate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o917-o918.	0.2	3
290	4-(4-Fluorophenyl)-3-(pyridin-4-yl)-1-(2,4,6-trichlorophenyl)-1H-pyrazol-5-amine. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2603-o2603.	0.2	3
291	Zur Reaktion von Triphenylphosphan mit Thionylchlorid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1784-1786.	1.2	3
292	Synthesis, X-ray diffraction study and pharmacological evaluation of 3-amino-4-methylthiophene-2-acylcarbohydrazones. Anais Da Academia Brasileira De Ciencias, 2018, 90, 1073-1088.	0.8	3
293	Promiscuity analysis of a kinase panel screen with designated p38 alpha inhibitors. European Journal of Medicinal Chemistry, 2020, 187, 112004.	5.5	3
294	Chemical Space Exploration of Oxetanes. International Journal of Molecular Sciences, 2020, 21, 8199.	4.1	3
295	High-Throughput Screening Platform in Postnatal Heart Cells and Chemical Probe Toolbox to Assess Cardiomyocyte Proliferation. Journal of Medicinal Chemistry, 2022, 65, 1505-1524.	6.4	3
296	Target Hopping from Protein Kinases to PXR: Identification of Small-Molecule Protein Kinase Inhibitors as Selective Modulators of Pregnane X Receptor from TýKIC Library. Cells, 2022, 11, 1299.	4.1	3
297	Super-conserved receptors expressed in the brain: biology and medicinal chemistry efforts. Future Medicinal Chemistry, 2022, 14, 899-913.	2.3	3
298	Scaffold modified Vemurafenib analogues as highly selective mitogen activated protein kinase kinase 4 (MKK4) inhibitors. European Journal of Medicinal Chemistry, 2022, 240, 114584.	5.5	3
299	Synthesis and Cyclooxygenase Inhibitory Properties of Novel (+) 2-(6-Methoxy-2-naphthyl)propanoic Acid (Naproxene) Derivatives. Archiv Der Pharmazie, 2001, 334, 104-106.	4.1	2
300	4-(4-Fluorophenyl)-3-(4-pyridyl)quinolin-2(1H)-one. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o2648-o2650.	0.2	2
301	4-[5-Amino-4-(4-fluorophenyl)-3-(pyridin-4-yl)-1H-pyrazol-1-yl]benzonitrile. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, 0935-0935.	0.2	2
302	Discovery of a Novel Series of Tetrahydroâ€Î²â€€arbolines Inducing Autophagic Cell Death in Human Metastatic Melanoma. Archiv Der Pharmazie, 2014, 347, 398-406.	4.1	2
303	Adjunctive role of Calyptranthes tricona extract with probiotic Kluyveromyces marxianus on colorectal adenocarcinoma Caco-2 cells. Phytochemistry Letters, 2019, 30, 1-5.	1.2	2
304	Controlling the Covalent Reactivity of a Kinase Inhibitor with Light. Angewandte Chemie, 2021, 133, 20340-20345.	2.0	2
305	4-[5-(4-Fluorophenyl)-1H-imidazol-4-yl]pyridine. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, 0573-0573.	0.2	2
306	2-(4-Fluorophenyl)-3-(4-pyridyl)pyrido[2,3-b]pyrazine. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2512-o2512.	0.2	2

#	Article	IF	Citations
307	Dapsone is not a Pharmacodynamic Lead Compound for its Aryl Derivatives. Current Computer-Aided Drug Design, 2020, 16, 327-339.	1.2	2
308	3-(2-Fluorophenyl)-6-(phenoxymethyl)-1,2,4-triazolo[3,4- <i>b</i> li>][1,3,4]thiadiazole. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o700-o700.	0.2	2
309	2,2,2â€Trifluoroethanolâ€mediated hydroarylation of fluorinated alkynes with indoles: Application to diindolylmethanes. Archiv Der Pharmazie, 2022, 355, e2100488.	4.1	2
310	3-(4-Fluorophenyl)-4-(4-pyridyl)quinolin-2(1H)-one. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o2475-o2477.	0.2	1
311	4-[5-(4-Fluorophenyl)-3-isopropylisoxazol-4-yl]pyridine. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o3647-o3649.	0.2	1
312	4-[3-(4-Fluorophenyl)-5-isopropylisoxazol-4-yl]pyridine. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o3707-o3709.	0.2	1
313	3,4-Bis(4-fluorophenyl)-1,2,5-oxadiazole 2-oxide. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o4827-o4828.	0.2	1
314	N-{(Z)-2-[1-(Triisopropylsilyl)-1H-indol-3-yl]-2-(triisopropylsilyloxy)vinyl}-2-(3,4,5-trimethoxyphenyl)acetamide. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o1266-o1268.	0.2	1
315	6-Amino-1-benzyl-4-(4-chlorophenyl)-3-(4-pyridyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o701-o701.	0.2	1
316	A Convenient Synthesis of 1-(4-Fluorophenyl)-2-(4-pyridyl)cyclopentene from Cyclopentanone. Synthesis, 2008, 2008, 225-228.	2.3	1
317	N-[(3RS,4RS)-1-Benzyl-4-methylpiperidin-3-yl]-5-nitro-1-phenylsulfonyl-1H-pyrrolo[2,3-b]pyridine-4-amine. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3051-o3051.	0.2	1
318	1-[(3RS,4RS)-1-Benzyl-4-methylpiperidin-3-yl]-1,6-dihydroimidazo[4,5-d]pyrrolo[2,3-b]pyridine hemihydrate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3052-o3052.	0.2	1
319	Dual Inhibition of Phosphodiesterase-4 and p38 MAP Kinase: A Strategy for Treatment of Chronic Inflammatory Diseases. RSC Drug Discovery Series, 2012, , 137-157.	0.3	1
320	2-(3-{(3 <i>>R</i> ,4 <i>>R</i>)-4-Methyl-3-[methyl(7 <i>H</i> -pyrrolo[2,3- <i>d</i>)]pyrimidin-4-yl)amino]piperidin-1-ymonohydrate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o382-o383.	yl}oxetan- 0.2	3-y])acetonitr
321	Design and Synthesis of Novel Quinazoline Derivatives and Their Evaluation as PI3Ks Inhibitors. Chemical and Pharmaceutical Bulletin, 2014, 62, 1166-1172.	1.3	1
322	11th German Conference on Chemoinformatics (GCC 2015). Journal of Cheminformatics, 2016, 8, 18.	6.1	1
323	N1-{4-[2-(Methylthio)-1H-imidazol-5-yl]pyridin-2-yl}benzene-1,4-diamine. MolBank, 2019, 2019, M1048.	0.5	1
324	N-(6-Chloro-3-nitropyridin-2-yl)-5-(1-methyl-1H-pyrazol-4-yl)isoquinolin-3-amine. MolBank, 2021, 2021, M1181.	0.5	1

#	Article	IF	Citations
325	Improved Multigram Route to a Tricyclic Key Intermediate for Dibenzosuberone-Based p38 Inhibitors via an Optimized Early-Stage Heck Coupling. Organic Process Research and Development, 2021, 25, 1831-1840.	2.7	1
326	4-[4-(4-Fluorophenyl)-2-methyl-5-oxo-2,5-dihydroisoxazol-3-yl]-1-methylpyridinium iodide–4-[3-(4-fluorophenyl)-2-methyl-5-oxo-2,5-dihydroisoxazol-4-yl]-1-methylpyridinium iodide (0.6/0.4). Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o298-o299.	0.2	1
327	4-(4-Fluorophenyl)-2-methyl-3-(1-oxy-4-pyridyl)isoxazol-5(2H)-one. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o504-o504.	0.2	1
328	tert-ButylN-benzyl-N-(4-methyl-2-pyridyl)carbamate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2222-o2222.	0.2	1
329	4-[2-(4-Fluorophenyl)-1H-pyrrol-3-yl]pyridine. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o457-o457.	0.2	1
330	4-[2-(4-Fluorophenyl)furan-3-yl]pyridine. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o458-o458.	0.2	1
331	N-{4-[4-(4-Fluorophenyl)-1-(2-methoxyethyl)-2-methylsulfanyl-1H-imidazol-5-yl]-2-pyridyl}-2-methyl-3-phenylpropio Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o3128-o3128.	onamide. 0.2	1
332	(2Z)-2-Fluoro-N-{4-[5-(4-fluorophenyl)-2-methylsulfanyl-1H-imidazol-4-yl]-2-pyridyl}-3-phenylacrylamide. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o3284-o3284.	0.2	1
333	N-{4-[4-(4-Fluorophenyl)-1-methyl-2-[(R)-methylsulfinyl]-1H-imidazol-5-yl]-2-pyridyl}acetamide dihydrate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o121-o121.	0.2	1
334	5-(4-Fluorophenyl)-4-(4-pyridyl)-1,3-oxazol-2-amine. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o917-o917.	0.2	1
335	Methyl 4-[5-(4-fluorophenyl)-4-(pyridin-4-yl)-1H-imidazol-2-ylsulfanyl]butanoate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1183-o1184.	0.2	1
336	N-{4-[3-(4-Fluorophenyl)pyrido[2,3-b]pyrazin-2-yl]-2-pyridyl}isopropylamine. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2557-o2557.	0.2	1
337	3-(4-Fluorophenyl)-2-(4-pyridyl)pyrido[2,3-b]pyrazine. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2546-o2546.	0.2	1
338	In vitro and in vivo anti-inflammatory and anticoagulant activities of Myrciaria plinioides D. Legrand ethanol leaf extract. Inflammopharmacology, 2022, 30, 565-577.	3.9	1
339	International Conference on Inflammopharmacology – VIII Side-Effects of Anti-Inflammatory Drugs Symposium. Expert Opinion on Investigational Drugs, 2003, 12, 1239-1241.	4.1	0
340	(4R)-4-Hydroxy-1-[(2S)-2-hydroxydodecyl]-L-proline monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o5138-o5140.	0.2	0
341	(1aR,2aS,5aS,5bS)-Perhydro-4H-oxireno[3,4]cyclopenta[1,2-b]furan-4-one. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o1359-o1360.	0.2	O
342	rac-(3E,3aR,6aR)-3-(Hydroxymethylene)-3,3a,6,6a-tetrahydro-2H-cyclopenta[b]furan-2-one. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o1551-o1553.	0.2	0

#	Article	IF	CITATIONS
343	2,2-Dimethyl-N-[3-(3,4,5-trimethoxybenzoyl)pyridin-4-yl]propanamide. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o1887-o1889.	0.2	0
344	3-(4-Fluorophenyl)-1-methyl-4-(4-pyridyl)quinolin-2(1H)-one. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2457-o2459.	0.2	0
345	(2aRS,3RS,4aSR,6aRS,6bSR)-3-Hydroxy-2a,3,4a,6,6a,6b-hexahydro-1,4-dioxacyclopenta[cd]pentalen-2(5H)-one. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2249-o2251.	0.2	0
346	2-(4-Fluorophenyl)-1-(4-pyridyl)cyclopentan-1-ol. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o3531-o3531.	0.2	0
347	2-(6-Methoxy-7H-purin-7-yl)-1-phenylethanone monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4154-o4155.	0.2	O
348	2-(6-Amino-7H-purin-7-yl)-1-phenylethanone. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4646-o4647.	0.2	0
349	Ethyl (2,3-dihydro-1H,1′H-2,3′-biindol-1-yl)glyoxylate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o1415-o1417.	0.2	O
350	N-[3-(5-Oxo-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-2-ylamino)phenyl]furan-3-carboxamide. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1100-o1100.	0.2	0
351	2-(Bicyclo[2.2.1]hept-5-en-2-yl)-1H-pyrrolo[2,3-b]pyridine. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1800-o1800.	0.2	O
352	N-{2-Methyl-5-[(5-oxo-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-2-yl)amino]phenyl}benzamide. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1867-o1867.	0.2	0
353	N-(4-Chloropyridin-2-yl)-N-(4-methylphenylsulfonyl)acetamide. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o3320-o3320.	0.2	O
354	N-(4-Chloropyridin-2-yl)-N-methoxymethyl-4-methylbenzenesulfonamide. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, 03321-03321.	0.2	0
355	1-[4-(2-Aminoanilino)phenyl]-2,2,2-trifluoroethanone. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1149-o1149.	0.2	O
356	Transient exposure of macrophages to P38 map kinase inhibition conditions cell responses through MAPK activated protein kinase-2 regulation. Annals of the Rheumatic Diseases, 2011, 70, A17-A17.	0.9	0
357	3-(2,4-Dimethoxyanilino)-8-methoxydibenz[b,e]oxepin-11(6H)-one. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o487-o487.	0.2	O
358	1,4-Dimethyl-2-phenyl-6,7-dihydro-1H-pyrazolo[4,3-b]pyridine-3,5(2H,4H)-dione. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2586-o2586.	0.2	0
359	3-(2,4-Difluoroanilino)-9-nitrodibenzo[b,e]oxepin-11(6H)-one. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o555-o555.	0.2	O
360	6-(4-Chlorophenyl)-7-phenyl-2,3-dihydro-1H-pyrrolizine-5-carbaldehyde. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2292-o2292.	0.2	0

#	Article	IF	CITATIONS
361	6-(4-Methoxyphenyl)-7-phenyl-2,3-dihydro-1H-pyrrolizine-5-carbaldehyde. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2417-o2417.	0.2	O
362	2-[5-Bromo-1-(3-chlorobenzyl)-2-methyl-1H-indol-3-yl]acetic acid. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3396-o3396.	0.2	0
363	3-(4-Bromophenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, 03397-03397.	0.2	0
364	New Frontiers in Kinases: Second Generation Inhibitors–Going beyond Cancer. ACS Medicinal Chemistry Letters, 2015, 6, 1-1.	2.8	0
365	Optimierte Bindungsdauer am Zielenzym: Typâ€lâ€Inhibitoren der p38αâ€MAPâ€Kinase mit verbesserter Bindungskinetik durch direkte Interaktion mit der Râ€5pine. Angewandte Chemie, 2017, 129, 5448-5453.	2.0	0
366	Multi-gram Preparation of 7-Nitroquinoxalin-2-amine. Journal of the Brazilian Chemical Society, 0, , .	0.6	0
367	Data for homogeneous thermofluorimetric assays for ethanolamine using aptamers and a PCR instrument. Data in Brief, 2019, 24, 103946.	1.0	O
368	The Investigation of Lipoxygenases as Therapeutic Targets in Malignant Pleural Mesothelioma. Pathology and Oncology Research, 2020, 26, 985-995.	1.9	0
369	Simplifying Submission Requirements for the Journal of Medicinal Chemistry. Journal of Medicinal Chemistry, 2021, 64, 7877-7878.	6.4	O
370	tert-ButylN-benzyl-N-[4-(4-fluorobenzoylmethyl)-2-pyridyl]carbamate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2221-o2221.	0.2	0
371	4-[3-(4-Fluorophenyl)quinoxalin-2-yl]-N-isopropylpyridin-2-amine. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1344-o1344.	0.2	0
372	1-[2-(Benzylamino)-4-pyridyl]-2-(4-fluorophenyl)ethane-1,2-dione. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1451-o1451.	0.2	0
373	3-(4-Fluorophenyl)-6-methoxy-2-(4-pyridyl)quinoxaline. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1626-o1626.	0.2	0
374	2-[(1-Methyl-1H-pyrrol-2-yl)carbonylmethyl]isoindoline-1,3-dione. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2375-o2375.	0.2	0
375	4-(4-Fluorophenyl)-1-methoxymethyl-2-phenyl-1H-imidazole. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o2803-o2803.	0.2	0
376	4-Chloro-1-(4-methylphenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o3018-o3018.	0.2	0
377	2-(3,4,5-Trimethoxyphenyl)-1H-pyrrolo[2,3-b]pyridine. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o3097-o3097.	0.2	0
378	7-[4-(4-Fluorophenyl)-2-methylsulfanyl-1H-imidazol-5-yl]tetrazolo[1,5-a]pyridine. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, 0451-0451.	0.2	0

#	ARTICLE	IF	CITATIONS
379	4-Chloro-7-methoxymethyl-2-phenyl-7H-pyrrolo[2,3-b]pyridine. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, 0822-0822.	0.2	0
380	Abstract 257: Evaluation of organic cation transporter 1 (OCT1, SLC22A1) as transporter for sorafenib. , 2016, , .		0
381	Poly[[tetramethanolbis[4-oxo-3-(pyridin-4-yl)-1-(2,4,6-trichlorophenyl)-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-6 ether–methanol (1/1/2)]. IUCrData, 2016, 1, .	6-olato]dis	odium]–d <mark>ie</mark>
382	Abstract 1257: A MYC-Aurka protein complex represents an actionable target in p53 altered liver cancer. , 2016, , .		0