
Kazuo Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/934190/publications.pdf Version: 2024-02-01

ΚΑΖΙΙΟ ΧΑΜΑΜΟΤΟ

#	Article	IF	CITATIONS
1	Low-Order Wideband Isolation Transformer Modeling Based on Independent Branch Fitting. IEEE Transactions on Electromagnetic Compatibility, 2022, 64, 874-883.	2.2	1
2	Anomaly detection for wind turbine damaged due to lightning strike. Electric Power Systems Research, 2022, 209, 107918.	3.6	4
3	Study on Improvement of Lightning Damage Detection Model for Wind Turbine Blade. Machines, 2022, 10, 9.	2.2	5
4	Detection of Lightning Damage on Wind Turbine Blades Using the SCADA System. IEEE Transactions on Power Delivery, 2021, 36, 777-784.	4.3	16
5	Theoretical and NEC Calculations of Electromagnetic Fields Generated From a Multi-Phase Underground Cable. IEEE Transactions on Power Delivery, 2021, 36, 1270-1280.	4.3	13
6	3-D FDTD Analysis of Lightning-Induced Voltages in Distribution Lines Due to Inclined Lightning. IEEE Transactions on Electromagnetic Compatibility, 2021, 63, 189-197.	2.2	7
7	A Study on External Electromagnetic Characteristics of Underground Cables With Consideration of Terminations. IEEE Transactions on Power Delivery, 2021, 36, 3255-3265.	4.3	9
8	Effective Length of Counterpoises Connected to Wind Turbine Foundation. IEEE Transactions on Power Delivery, 2021, 36, 3956-3963.	4.3	6
9	Analysis of the lightning impulse and low-frequency performance of wind farm grounding systems. Electric Power Systems Research, 2020, 180, 106068.	3.6	12
10	Impedance and Admittance Formulas for a Multistair Model of Transmission Towers. IEEE Transactions on Electromagnetic Compatibility, 2020, 62, 2491-2502.	2.2	10
11	A comprehensive analysis of the effect of frequency-dependent soil electrical parameters on the lightning response of wind-turbine grounding systems. Electric Power Systems Research, 2019, 175, 105927.	3.6	25
12	Lightning Statistics Observed on Wind Turbines in Lightning-Susceptible Areas during Winter. , 2019, , .		0
13	Application of Genetic Algorithm to Detect Disconnected Locations of Down Conductors along Wind Turbine Blades. , 2019, , .		Ο
14	Lightning and Low-Frequency Performance of Interconnected Grounding Systems of Wind Turbines. , 2018, , .		2
15	Approach Techniques for Detecting Disconnected Locations of Down Conductors inside Wind Turbine Blades without Trial and Error. , 2018, , .		1
16	Long-Wave-Tail Current Generator to Generate Real Winter Lightning Current. , 2018, , .		5
17	Lightning protection and EMC issues of renewable energy sources. , 2018, , .		1
18	Latest trends in technologies for sound operation of wind turbines against lightning. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2018, 205, 3-7.	0.4	8

Кагио Үамамото

#	Article	IF	CITATIONS
19	FDTD analysis of distribution line voltages induced by inclined lightning channel. Electric Power Systems Research, 2018, 160, 450-456.	3.6	10
20	A Study on Basic Characteristics of the Proximity Effect on Conductors. IEEE Transactions on Power Delivery, 2017, 32, 1790-1799.	4.3	25
21	Effective length of vertical grounding wires connected to wind turbine foundation. Journal of International Council on Electrical Engineering, 2017, 7, 89-95.	0.4	7
22	The effect of frequency dependence of soil electrical parameters on the lightning performance of typical wind-turbine grounding systems. , 2017, , .		8
23	Transient grounding characteristic of wind turbines affecting back-flow lightning current into distribution system. , 2016, , .		1
24	About 100 years survey of the surface temperatures of Japan sea and lightning days along the coast. , 2016, , .		2
25	High voltage impulse experiment on electric automobiles and its verification part2. , 2016, , .		1
26	Derivations of Effective Length Formula of Vertical Grounding Rods and Horizontal Grounding Electrodes Based on Physical Phenomena of Lightning Surge Propagations. IEEE Transactions on Industry Applications, 2015, 51, 4934-4942.	4.9	25
27	Overvoltages at two instruments grounded at different places in a railway signal system. , 2015, , .		1
28	Mutual Influence of a Deeply Buried Grounding Electrode and the Surrounding Grounding Mesh. IEEE Transactions on Industry Applications, 2015, 51, 4900-4906.	4.9	7
29	EMTP models of a wind turbine grounding system. , 2014, , .		3
30	Transient grounding characteristics of a wind turbine foundation with grounding wires and plates. , 2014, , .		3
31	Overvoltages on DC Side of Power Conditioning System Caused by Lightning Stroke to Structure Anchoring Photovoltaic Panels. Electrical Engineering in Japan (English Translation of Denki Gakkai) Tj ETQq1 1 0	.7 8 4 3 14 r	gB 1 7/Overlo
32	Lightning Overvoltage between Building and Individual Groundings. IEEJ Transactions on Power and Energy, 2014, 134, 114-120.	0.2	0
33	A development of a shunt lightning current measuring system using a Rogowski coil. , 2013, , .		5
34	Current distribution characteristic of a quasi-isotropic CFRP panel. , 2013, , .		2
35	Validations of lightning protections for accidents at a wind farm. , 2013, , .		7
36	Influence of Grounding Systems on Overvoltages Appearing on DC Wirings of Photovoltaic Power Generation System. IEEJ Transactions on Power and Energy, 2013, 133, 777-784.	0.2	0

Кагио Үамамото

#	Article	IF	CITATIONS
37	New Lightning Protection Technologies for Airplanes using Composite Materials. IEEJ Transactions on Power and Energy, 2013, 133, 690-693.	0.2	0
38	A development of a measurement system using a Rogowski coil to observe sprit lightning current flows inside and outside a wind turbine generator system. , 2012, , .		1
39	Grounding characteristics of a wind turbine measured immediately after its undergrounding. , 2012, , .		6
40	Response characteristics of diode gas discharge tubes. , 2012, , .		4
41	Transient grounding characteristics of wind turbines. , 2012, , .		5
42	Threats of lightning current through an electric vehicle. , 2012, , .		5
43	Transient Magnetic Fields and Current Distributions in an Electric Vehicle Caused by a Lightning Stroke. IEEJ Transactions on Power and Energy, 2012, 132, 667-675.	0.2	8
44	Overvoltages on DC Side of Power Conditioning System Caused by Lightning Stroke to Structure Anchoring Photovoltaic Panels. IEEJ Transactions on Power and Energy, 2012, 132, 903-913.	0.2	5
45	Examination of Height of Transmission Line and Lightning Striking Distance concerning Lightning Shielding Effect Prediction. IEEJ Transactions on Power and Energy, 2012, 132, 690-696.	0.2	0
46	Experimental Studies about Transient Characteristics of a Deeply Buried Grounding Electrode and a Grounding Mesh. IEEJ Transactions on Power and Energy, 2012, 132, 500-506.	0.2	0
47	Field tests of grounding at an actual wind turbine generator system. , 2010, , .		6
48	Transient Grounding Characteristics of an Actual Wind Turbine Generator System at a Lowâ€resistivity Site. IEEJ Transactions on Electrical and Electronic Engineering, 2010, 5, 21-26.	1.4	15
49	Analytical Surveys of Transient and Frequency-Dependent Grounding Characteristics of a Wind Turbine Generator System on the Basis of Field Tests. IEEE Transactions on Power Delivery, 2010, 25, 3035-3043.	4.3	91
50	An experimental study of lightning overvoltages in wind turbine generation systems using a reduced-size model. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2007, 158, 22-30.	0.4	39
51	Lorentz Microscopy of Magnetic Granular Films. Physical Review Letters, 1999, 83, 1038-1041.	7.8	12
52	Anomaly detection using a <scp>SCADA</scp> feature extractor and machine learning to detect lightning damage on wind turbine blades. IEEJ Transactions on Electrical and Electronic Engineering, 0, , .	1.4	1