
Jin-Ping Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/934136/publications.pdf Version: 2024-02-01

IIN-PINC XUE

#	Article	IF	CITATIONS
1	Synthesis and in Vitro Photodynamic Activity of Oligomeric Ethylene Glycol–Quinoline Substituted Zinc(II) Phthalocyanine Derivatives. Journal of Medicinal Chemistry, 2013, 56, 5797-5805.	6.4	80
2	Inhibition of human hepatocellular carcinoma HepG2 by phthalocyanine photosensitiser PHOTOCYANINE: ROS production, apoptosis, cell cycle arrest. European Journal of Cancer, 2012, 48, 2086-2096.	2.8	71
3	A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc(ii) phthalocyanine and small molecule target-based anticancer drug erlotinib. Chemical Communications, 2013, 49, 9570.	4.1	66
4	A Novel Tumor Targeting Drug Carrier for Optical Imaging and Therapy. Theranostics, 2014, 4, 642-659.	10.0	61
5	A Molecular Combination of Zinc(II) Phthalocyanine and Tamoxifen Derivative for Dual Targeting Photodynamic Therapy and Hormone Therapy. Journal of Medicinal Chemistry, 2017, 60, 6693-6703.	6.4	60
6	Zinc phthalocyanine conjugated with the amino-terminal fragment of urokinase for tumor-targeting photodynamic therapy. Acta Biomaterialia, 2014, 10, 4257-4268.	8.3	54
7	Metal phthalocyanine as photosensitizer for photodynamic therapy (PDT). Science in China Series B: Chemistry, 2001, 44, 113-122.	0.8	39
8	A novel tumor and mitochondria dual-targeted photosensitizer showing ultra-efficient photodynamic anticancer activities. Chemical Communications, 2019, 55, 866-869.	4.1	39
9	Zeolitic imidazolate metal organic framework-8 as an efficient pH-controlled delivery vehicle for zinc phthalocyanine in photodynamic therapy. Journal of Materials Science, 2018, 53, 2351-2361.	3.7	36
10	Enhanced Synergistic Antibacterial Activity through a Smart Platform Based on UiO-66 Combined with Photodynamic Therapy and Chemotherapy. Langmuir, 2020, 36, 4025-4032.	3.5	33
11	An epidermal growth factor receptor-targeted and endoplasmic reticulum-localized organic photosensitizer toward photodynamic anticancer therapy. European Journal of Medicinal Chemistry, 2019, 182, 111625.	5.5	31
12	Synthesis and in vitro Anticancer Activity of Zinc(II) Phthalocyanines Conjugated with Coumarin Derivatives for Dual Photodynamic and Chemotherapy. ChemMedChem, 2015, 10, 304-311.	3.2	30
13	Molecularâ€Targetâ€Based Anticancer Photosensitizer: Synthesis and in vitro Photodynamic Activity of Erlotinib–Zinc(II) Phthalocyanine Conjugates. ChemMedChem, 2015, 10, 312-320.	3.2	28
14	A novel fabricated material with divergent chemical handles based on UiO-66 and used for targeted photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 6227-6232.	5.8	27
15	Photocyanine: A novel and effective phthalocyanine-based photosensitizer for cancer treatment. Journal of Innovative Optical Health Sciences, 2020, 13, .	1.0	26
16	In vitro photodynamic activities of zinc(II) phthalocyanines substituted with pyridine moieties. Photodiagnosis and Photodynamic Therapy, 2016, 13, 341-343.	2.6	20
17	Optimal light dose and drug dosage in the photodynamic treatment using PHOTOCYANINE. Photodiagnosis and Photodynamic Therapy, 2011, 8, 267-274.	2.6	19
18	A novel zinc phthalocyanine-indometacin photosensitizer with "Three-in-one―cyclooxygenase-2-driven dual targeting and aggregation inhibition for high-efficient anticancer therapy. Dyes and Pigments, 2022, 198, 109997.	3.7	18

JIN-PING XUE

#	Article	IF	CITATIONS
19	Novel pH-sensitive zinc phthalocyanine assembled with albumin for tumor targeting and treatment. International Journal of Nanomedicine, 2018, Volume 13, 7681-7695.	6.7	17
20	A drug carrier targeting murine uPAR for photodynamic therapy and tumor imaging. Acta Biomaterialia, 2015, 23, 116-126.	8.3	16
21	Erlotinib Analogueâ€substituted Zinc(II) Phthalocyanines for Small Molecular Targetâ€based Photodynamic Cancer Therapy. Chinese Journal of Chemistry, 2016, 34, 983-988.	4.9	16
22	Small molecular target-based multifunctional upconversion nanocomposites for targeted and in-depth photodynamic and chemo-anticancer therapy. Materials Science and Engineering C, 2019, 104, 109849.	7.3	15
23	Novel Targeted Photosensitizer as an Immunomodulator for Highly Efficient Therapy of T-Cell Acute Lymphoblastic Leukemia. Journal of Medicinal Chemistry, 2020, 63, 15655-15667.	6.4	15
24	Silicon Phthalocyanines Axially Disubstituted with Erlotinib toward Smallâ€Molecularâ€Targetâ€Based Photodynamic Therapy. ChemMedChem, 2017, 12, 1504-1511.	3.2	14
25	Epidermal Growth Factor Receptor-Targeted Delivery of a Singlet-Oxygen Sensitizer with Thermal Controlled Release for Efficient Anticancer Therapy. Molecular Pharmaceutics, 2019, 16, 3703-3710.	4.6	14
26	A Highly Selective and Turnâ€on Fluorescent Probe for Fe ³⁺ Ion Based on Perylene Tetracarboxylic Diimide. Chinese Journal of Chemistry, 2014, 32, 1116-1120.	4.9	13
27	Preparation and In Vitro Photodynamic Activity of Glucosylated Zinc(II) Phthalocyanines as Underlying Targeting Photosensitizers. Molecules, 2017, 22, 845.	3.8	13
28	Probing the interactions of phthalocyanine-based photosensitizers with model phospholipid bilayer by molecular dynamics simulations. Journal of Porphyrins and Phthalocyanines, 2018, 22, 764-770.	0.8	13
29	Insights into the binding mechanism of BODIPY-based photosensitizers to human serum albumin: A combined experimental and computational study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 203, 158-165.	3.9	12
30	Improved photodynamic anticancer activity and mechanisms of a promising zinc(II) phthalocyanine-quinoline conjugate photosensitizer in vitro and in vivo. Biomedical Optics Express, 2020, 11, 3900.	2.9	12
31	Blood distribution and plasma protein binding of PHOTOCYANINE: a promising phthalocyanine photosensitizer inphaseâ; clinical trials. European Journal of Pharmaceutical Sciences, 2020, 153, 105491.	4.0	9
32	<p>Tumor Targeting Chemo- and Photodynamic Therapy Packaged in Albumin for Enhanced Anti-Tumor Efficacy</p> . International Journal of Nanomedicine, 2020, Volume 15, 151-167.	6.7	9
33	Using porphyrins as albumin-binding molecules to enhance antitumor efficacies and reduce systemic toxicities of antimicrobial peptides. European Journal of Medicinal Chemistry, 2021, 217, 113382.	5.5	9
34	Functionalized Eu(III)-based nanoscale metal-organic framework for enhanced targeted anticancer therapy. Journal of Porphyrins and Phthalocyanines, 2019, 23, 619-627.	0.8	6
35	EGFR-targeted photosensitizer for enhanced photodynamic therapy and imaging therapeutic effect by monitoring GSH decline. Sensors and Actuators B: Chemical, 2022, 355, 131275.	7.8	6
36	Quinolin-8-yloxy-substituted zinc(II) phthalocyanines for enhanced <i>in vitro</i> photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2018, 22, 807-813.	0.8	5

JIN-PING XUE

#	Article	IF	CITATIONS
37	A phase Ι study to evaluate the application of photocyanine using pharmacokinetic and pharmacodynamic analysis in patients with malignancy. Cancer Chemotherapy and Pharmacology, 2020, 86, 267-276.	2.3	5
38	Tamoxifen-zinc(II) phthalocyanine conjugates for target-based photodynamic therapy and hormone therapy. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1073-1083.	0.8	4
39	Synthesis and photophysical properties of zinc phthalocyanines substituted with quinolinoxy group. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1206-1213.	0.8	3
40	Synthesis, characterization and photosensitivity of tetrakis-α-(2-methyl-8-quinolinoxy) metallophthalocyanines. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2008, 3, 267-274.	0.4	2
41	A novel hierarchical targeting and controllable smart nanoparticles for enhanced in situ nuclear photodynamic therapy. Nano Research, 2022, 15, 4212-4223.	10.4	2
42	Fluorescence-Reporting-Guided Tumor Acidic Environment-Activated Triple Photodynamic, Chemodynamic, and Chemotherapeutic Reactions for Efficient Hepatocellular Carcinoma Cell Ablation. Langmuir, 2022, 38, 5381-5391.	3.5	2
43	Enhanced Efficacy of Gefitinib in Drugâ€5ensitive and Drugâ€Resistant Cancer Cell Lines after Arming with a Singlet Oxygen Releasing Moiety. ChemMedChem, 2020, 15, 794-798.	3.2	1
44	Professor Naisheng Chen: One of the distinguished pioneers in the field of porphyrin chemistry in China. A brief introduction to his achievements in the research and application of phthalocyanines and other related molecules in medicine and materials. Journal of Porphyrins and Phthalocyanines, 2018, 22, iii-xiii.	0.8	0
45	An aromatase inhibitor in combination with Zinc(II) phthalocyanine for targeted therapy of post-menopausal breast cancer. Dyes and Pigments, 2022, 202, 110281.	3.7	Ο