
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9341138/publications.pdf Version: 2024-02-01

WELZHENC

#	Article	IF	CITATIONS
1	Manganese toxicity upon overexposure. NMR in Biomedicine, 2004, 17, 544-553.	1.6	656
2	Manganese Toxicity Upon Overexposure: a Decade in Review. Current Environmental Health Reports, 2015, 2, 315-328.	3.2	542
3	Manganese: Recent advances in understanding its transport and neurotoxicity. Toxicology and Applied Pharmacology, 2007, 221, 131-147.	1.3	527
4	Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicology and Applied Pharmacology, 2003, 192, 1-11.	1.3	417
5	Regulation of brain iron and copper homeostasis by brain barrier systems: Implication in neurodegenerative diseases. , 2012, 133, 177-188.		241
6	Copper transport to the brain by the blood-brain barrier and blood-CSF barrier. Brain Research, 2009, 1248, 14-21.	1.1	214
7	Manganese inhibits mitochondrial aconitase: a mechanism of manganese neurotoxicity1Published on the World Wide Web on 3 June 1998.1. Brain Research, 1998, 799, 334-342.	1.1	191
8	Occupational Exposure to Welding Fume among Welders: Alterations of Manganese, Iron, Zinc, Copper, and Lead in Body Fluids and the Oxidative Stress Status. Journal of Occupational and Environmental Medicine, 2004, 46, 241-248.	0.9	136
9	<i>In Vivo</i> Measurement of Brain GABA Concentrations by Magnetic Resonance Spectroscopy in Smelters Occupationally Exposed to Manganese. Environmental Health Perspectives, 2011, 119, 219-224.	2.8	130
10	Brain magnetic resonance imaging and manganese concentrations in red blood cells of smelting workers: Search for biomarkers of manganese exposure. NeuroToxicology, 2007, 28, 126-135.	1.4	125
11	Alteration of saliva and serum concentrations of manganese, copper, zinc, cadmium and lead among career welders. Toxicology Letters, 2008, 176, 40-47.	0.4	124
12	Biomarkers of manganese intoxication. NeuroToxicology, 2011, 32, 1-8.	1.4	123
13	Alteration of iron homeostasis following chronic exposure to manganese in rats1Published on the World Wide Web on 10 May 1999.1. Brain Research, 1999, 833, 125-132.	1.1	121
14	Effective Treatment of Manganese-Induced Occupational Parkinsonism With p-Aminosalicylic Acid: A Case of 17-Year Follow-Up Study. Journal of Occupational and Environmental Medicine, 2006, 48, 644-649.	0.9	121
15	Differential Cytotoxicity of Mn(II) and Mn(III): Special Reference to Mitochondrial [Fe-S] Containing Enzymes. Toxicology and Applied Pharmacology, 2001, 175, 160-168.	1.3	118
16	Toxicology of choroid plexus: Special reference to metal-induced neurotoxicities. Microscopy Research and Technique, 2001, 52, 89-103.	1.2	117
17	Pathophysiology of manganese-associated neurotoxicity. NeuroToxicology, 2012, 33, 881-886.	1.4	115
18	The Choroid Plexus Removes β-Amyloid from Brain Cerebrospinal Fluid. Experimental Biology and Medicine, 2005, 230, 771-776.	1.1	113

#	Article	IF	CITATIONS
19	Cardiovascular Toxicities Upon Manganese Exposure. Cardiovascular Toxicology, 2005, 5, 345-354.	1.1	104
20	Alteration of Serum Concentrations of Manganese, Iron, Ferritin, and Transferrin Receptor Following Exposure to Welding Fumes Among Career Welders. NeuroToxicology, 2005, 26, 257-265.	1.4	102
21	Iron supplement prevents lead-induced disruption of the blood–brain barrier during rat development. Toxicology and Applied Pharmacology, 2007, 219, 33-41.	1.3	101
22	Neurotoxicology of the Brain Barrier System: New Implications. Journal of Toxicology: Clinical Toxicology, 2001, 39, 711-719.	1.5	100
23	Choroid plexus protects cerebrospinal fluid against toxic metals. FASEB Journal, 1991, 5, 2188-2193.	0.2	96
24	Establishment and characterization of an immortalized Z310 choroidal epithelial cell line from murine choroid plexus. Brain Research, 2002, 958, 371-380.	1.1	94
25	Brain capillary endothelium and choroid plexus epithelium regulate transport of transferrinâ€bound and free iron into the rat brain. Journal of Neurochemistry, 2004, 88, 813-820.	2.1	94
26	Chelation therapy of manganese intoxication with para-aminosalicylic acid (PAS) in Sprague–Dawley rats. NeuroToxicology, 2009, 30, 240-248.	1.4	89
27	Western diets induce blood-brain barrier leakage and alter spatial strategies in rats Behavioral Neuroscience, 2016, 130, 123-135.	0.6	86
28	Vulnerability of welders to manganese exposure – A neuroimaging study. NeuroToxicology, 2014, 45, 285-292.	1.4	85
29	Elevated blood harmane (1-methyl-9H-pyrido[3,4-b]indole) concentrations in essential tremor. NeuroToxicology, 2008, 29, 294-300.	1.4	83
30	Manganese exposure among smelting workers: blood manganese–iron ratio as a novel tool for manganese exposure assessment. Biomarkers, 2009, 14, 3-16.	0.9	79
31	Manganese exposure among smelting workers: Relationship between blood manganese–iron ratio and early onset neurobehavioral alterations. NeuroToxicology, 2009, 30, 1214-1222.	1.4	77
32	Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb. Environmental Research, 2015, 140, 10-17.	3.7	76
33	Determination of Harmane and Harmine in Human Blood Using Reversed-Phased High-Performance Liquid Chromatography and Fluorescence Detection. Analytical Biochemistry, 2000, 279, 125-129.	1.1	73
34	Manganese accumulation in bone following chronic exposure in rats: Steady-state concentration and half-life in bone. Toxicology Letters, 2014, 229, 93-100.	0.4	69
35	Manganese accumulates primarily in nuclei of cultured brain cells. NeuroToxicology, 2008, 29, 466-470.	1.4	64
36	Aging results in copper accumulations in glial fibrillary acidic protein-positive cells in the subventricular zone. Aging Cell, 2013, 12, 823-832.	3.0	64

#	Article	IF	CITATIONS
37	Iron overload following manganese exposure in cultured neuronal, but not neuroglial cells. Brain Research, 2001, 897, 175-179.	1.1	60
38	Chronic Lead Exposure Alters Transthyretin Concentration in Rat Cerebrospinal Fluid: The Role of the Choroid Plexus. Toxicology and Applied Pharmacology, 1996, 139, 445-450.	1.3	57
39	Lead exposure increases levels of β-amyloid in the brain and CSF and inhibits LRP1 expression in APP transgenic mice. Neuroscience Letters, 2011, 490, 16-20.	1.0	57
40	Increased β-amyloid deposition in Tg-SWDI transgenic mouse brain following in vivo lead exposure. Toxicology Letters, 2012, 213, 211-219.	0.4	55
41	Early lead exposure increases the leakage of the blood-cerebrospinal fluid barrier, in vitro. Human and Experimental Toxicology, 2007, 26, 159-167.	1.1	54
42	Upregulation of DMT1 expression in choroidal epithelia of the blood–CSF barrier following manganese exposure in vitro. Brain Research, 2006, 1097, 1-10.	1.1	53
43	Subacute manganese exposure in rats is a neurochemical model of early manganese toxicity. NeuroToxicology, 2014, 44, 303-313.	1.4	48
44	Inhibition by Lead of Production and Secretion of Transthyretin in the Choroid Plexus: Its Relation to Thyroxine Transport at Blood–CSF Barrier. Toxicology and Applied Pharmacology, 1999, 155, 24-31.	1.3	47
45	Evidence for altered hippocampal volume and brain metabolites in workers occupationally exposed to lead: A study by magnetic resonance imaging and 1H magnetic resonance spectroscopy. Toxicology Letters, 2008, 181, 118-125.	0.4	44
46	Regulation of Copper Transport Crossing Brain Barrier Systems by Cu-ATPases: Effect of Manganese Exposure. Toxicological Sciences, 2014, 139, 432-451.	1.4	43
47	Lead Exposure Promotes Translocation of Protein Kinase C Activities in Rat Choroid Plexusin Vitro,but Notin Vivo. Toxicology and Applied Pharmacology, 1998, 149, 99-106.	1.3	42
48	Increased Î ² -amyloid levels in the choroid plexus following lead exposure and the involvement of low-density lipoprotein receptor protein-1. Toxicology and Applied Pharmacology, 2009, 240, 245-254.	1.3	42
49	Alteration at translational but not transcriptional level of transferrin receptor expression following manganese exposure at the blood–CSF barrier in vitro. Toxicology and Applied Pharmacology, 2005, 205, 188-200.	1.3	39
50	X-Ray Fluorescence Imaging: A New Tool for Studying Manganese Neurotoxicity. PLoS ONE, 2012, 7, e48899.	1.1	39
51	Age-dependent increase of brain copper levels and expressions of copper regulatory proteins in the subventricular zone and choroid plexus. Frontiers in Molecular Neuroscience, 2015, 8, 22.	1.4	39
52	Primary culture of choroidal epithelial cells: Characterization of an in vitro model of blood-CSF barrier. In Vitro Cellular and Developmental Biology - Animal, 1998, 34, 40-45.	0.7	38
53	Elevated brain harmane (1-methyl-9H-pyrido[3,4-b]indole) in essential tremor cases vs. controls. NeuroToxicology, 2013, 38, 131-135.	1.4	38
54	Use of Z310 cells as an in vitro blood–cerebrospinal fluid barrier model: Tight junction proteins and transport properties. Toxicology in Vitro, 2008, 22, 190-199.	1.1	37

#	Article	IF	CITATIONS
55	Culture of Choroid Plexus Epithelial Cells and In Vitro Model of Blood–CSF Barrier. Methods in Molecular Biology, 2012, 945, 13-29.	0.4	37
56	Elevated blood harmane (1-methyl-9H-pyrido[3,4-b]indole) concentrations in Parkinson's disease. NeuroToxicology, 2014, 40, 52-56.	1.4	37
57	Intracellular localization and subsequent redistribution of metal transporters in a rat choroid plexus model following exposure to manganese or iron. Toxicology and Applied Pharmacology, 2008, 230, 167-174.	1.3	36
58	Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency. Toxicology and Applied Pharmacology, 2011, 256, 249-257.	1.3	36
59	Lead-induced accumulation of β-amyloid in the choroid plexus: Role of low density lipoprotein receptor protein-1 and protein kinase C. NeuroToxicology, 2010, 31, 524-532.	1.4	35
60	Efflux of Iron from the Cerebrospinal Fluid to the Blood at the Blood-CSF Barrier: Effect of Manganese Exposure. Experimental Biology and Medicine, 2008, 233, 1561-1571.	1.1	34
61	Brain disposition of α-Synuclein: roles of brain barrier systems and implications for Parkinson's disease. Fluids and Barriers of the CNS, 2014, 11, 17.	2.4	34
62	Molecular mechanism of distorted iron regulation in the blood–CSF barrier and regional blood–brain barrier following in vivo subchronic manganese exposure. NeuroToxicology, 2006, 27, 737-744.	1.4	33
63	Thalamic GABA Predicts Fine Motor Performance in Manganese-Exposed Smelter Workers. PLoS ONE, 2014, 9, e88220.	1.1	33
64	Establishment of an in vitro brain barrier epithelial transport system for pharmacological and toxicological study. Brain Research, 2005, 1057, 37-48.	1.1	32
65	Macromolecules involved in production and metabolism of beta-amyl oid at the brain barriers. Brain Research, 2007, 1138, 187-195.	1.1	32
66	Blood harmane (1-methyl-9H-pyrido[3,4-b]indole) concentration in essential tremor cases in Spain. NeuroToxicology, 2013, 34, 264-268.	1.4	32
67	X-ray fluorescence imaging of the hippocampal formation after manganese exposure. Metallomics, 2013, 5, 1554.	1.0	31
68	Mechanism of copper transport at the blood–cerebrospinal fluid barrier: influence of iron deficiency in an <i>in vitro</i> model. Experimental Biology and Medicine, 2012, 237, 327-333.	1.1	29
69	Relative contribution of CTR1 and DMT1 in copper transport by the blood–CSF barrier: Implication in manganese-induced neurotoxicity. Toxicology and Applied Pharmacology, 2012, 260, 285-293.	1.3	29
70	Relationship Between Changes in Brain MRI and ¹ H-MRS, Severity of Chronic Liver Damage, and Recovery After Liver Transplantation. Experimental Biology and Medicine, 2009, 234, 1075-1085.	1.1	28
71	Brain Regional Pharmacokinetics of <i>p</i> -Aminosalicylic Acid and Its N-Acetylated Metabolite: Effectiveness in Chelating Brain Manganese. Drug Metabolism and Disposition, 2011, 39, 1904-1909.	1.7	26
72	Development of a transportable neutron activation analysis system to quantify manganese in bone <i>in vivo</i> : feasibility and methodology. Physiological Measurement, 2013, 34, 1593-1609.	1.2	26

#	Article	IF	CITATIONS
73	Elevated Adult Neurogenesis in Brain Subventricular Zone Following In vivo Manganese Exposure: Roles of Copper and DMT1. Toxicological Sciences, 2015, 143, 482-498.	1.4	26
74	Plant essential oil constituents enhance deltamethrin toxicity in a resistant population of bed bugs (Cimex lectularius L.) by inhibiting cytochrome P450 enzymes. Pesticide Biochemistry and Physiology, 2021, 175, 104829.	1.6	26
75	Transport of L-[125 I]Thyroxine bY iN Situ Perfused Ovine Choroid Plexus: Inhibition by Lead Exposure. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2003, 66, 435-451.	1.1	23
76	Involvement of CTR1 and ATP7A in lead (Pb)-induced copper (Cu) accumulation in choroidal epithelial cells. Toxicology Letters, 2014, 225, 110-118.	0.4	23
77	A compact DD neutron generator–based NAA system to quantify manganese (Mn) in bone <i>in vivo</i> . Physiological Measurement, 2014, 35, 1899-1911.	1.2	22
78	Bed bugs, Cimex lectularius L., exhibiting metabolic and target site deltamethrin resistance are susceptible to plant essential oils. Pesticide Biochemistry and Physiology, 2020, 169, 104667.	1.6	21
79	Distribution of Lead and Transthyretin in Human Eyes. Journal of Toxicology: Clinical Toxicology, 2000, 38, 377-381.	1.5	20
80	HPLC analysis of para-aminosalicylic acid and its metabolite in plasma, cerebrospinal fluid and brain tissues. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 1101-1109.	1.4	20
81	Involvement of insulin-degrading enzyme in the clearance of beta-amyloid at the blood-CSF barrier: Consequences of lead exposure. Cerebrospinal Fluid Research, 2009, 6, 11.	0.5	19
82	Aberrant Adult Neurogenesis in the Subventricular Zone-Rostral Migratory Stream-Olfactory Bulb System Following Subchronic Manganese Exposure. Toxicological Sciences, 2016, 150, 347-368.	1.4	19
83	Upregulation of zinc transporter 2 in the blood–CSF barrier following lead exposure. Experimental Biology and Medicine, 2014, 239, 202-212.	1.1	18
84	The role of choroid plexus in IVIG-induced beta-amyloid clearance. Neuroscience, 2014, 270, 168-176.	1.1	18
85	The association of bone, fingernail and blood manganese with cognitive and olfactory function in Chinese workers. Science of the Total Environment, 2019, 666, 1003-1010.	3.9	18
86	Roles of P-glycoprotein and multidrug resistance protein in transporting para-aminosalicylic acid and its N-acetylated metabolite in mice brain. Acta Pharmacologica Sinica, 2014, 35, 1577-1585.	2.8	17
87	Development of a Cumulative Exposure Index (CEI) for Manganese and Comparison with Bone Manganese and Other Biomarkers of Manganese Exposure. International Journal of Environmental Research and Public Health, 2018, 15, 1341.	1.2	17
88	Expression and Transport of a-Synuclein at the Blood-Cerebrospinal Fluid Barrier and Effects of Manganese Exposure. ADMET and DMPK, 2015, 3, 15-33.	1.1	14
89	Subchronic Manganese Exposure Impairs Neurogenesis in the Adult Rat Hippocampus. Toxicological Sciences, 2018, 163, 592-608.	1.4	14
90	Altered clearance of beta-amyloid from the cerebrospinal fluid following subchronic lead exposure in rats: Roles of RAGE and LRP1 in the choroid plexus. Journal of Trace Elements in Medicine and Biology, 2020, 61, 126520.	1.5	14

#	Article	IF	CITATIONS
91	Customized compact neutron activation analysis system to quantify manganese (Mn) in bone <i>in vivo</i> . Physiological Measurement, 2017, 38, 452-465.	1.2	13
92	The Blood-CSF Barrier in Culture: Development of a Primary Culture and Transepithelial Transport Model from Choroidal Epithelial Cells. , 2002, 188, 99-114.		12
93	How Does an Occupational Neurologist Assess Welders and Steelworkers for a Manganese-Induced Movement Disorder? An International Team's Experiences in Guanxi, China Part II. Journal of Occupational and Environmental Medicine, 2012, 54, 1562-1564.	0.9	12
94	Reproductive toxicity of linuron following gestational exposure in rats and underlying mechanisms. Toxicology Letters, 2017, 266, 49-55.	0.4	12
95	<i>In vivo</i> neutron activation analysis of bone manganese in workers. Physiological Measurement, 2018, 39, 035003.	1.2	12
96	In vivo measurement of bone manganese and association with manual dexterity: A pilot study. Environmental Research, 2018, 160, 35-38.	3.7	12
97	Reduced expression of PARK2 in manganese-exposed smelting workers. NeuroToxicology, 2017, 62, 258-264.	1.4	11
98	ToxPoint: Brain Barrier Systems Play No Small Roles in Toxicant-induced Brain Disorders. Toxicological Sciences, 2020, 175, 147-148.	1.4	11
99	Evaluation of chronic lead effects in the blood brain barrier system by DCE-CT. Journal of Trace Elements in Medicine and Biology, 2020, 62, 126648.	1.5	11
100	Blood Harmane (1-Methyl-9 <i>H</i> -pyrido[3,4- <i>b</i>]indole) Concentrations in Essential Tremor: Repeat Observation in Cases and Controls in New York. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2012, 75, 673-683.	1.1	10
101	Involvement of MEK5/ERK5 signaling pathway in manganese-induced cell injury in dopaminergic MN9D cells. Journal of Trace Elements in Medicine and Biology, 2020, 61, 126546.	1.5	8
102	Characterization of bone aluminum, a potential biomarker of cumulative exposure, within an occupational population from Zunyi, China. Journal of Trace Elements in Medicine and Biology, 2020, 59, 126469.	1.5	8
103	Positive association between soil arsenic concentration and mortality from alzheimer's disease in mainland China. Journal of Trace Elements in Medicine and Biology, 2020, 59, 126452.	1.5	8
104	Blood Harmane (1-Methyl-9H-Pyrido[3,4-b]indole) and Mercury in Essential Tremor: A Population-Based, Environmental Epidemiology Study in the Faroe Islands. Neuroepidemiology, 2020, 54, 272-280.	1.1	8
105	Acute Acrolein Exposure Induces Impairment of Vocal Fold Epithelial Barrier Function. PLoS ONE, 2016, 11, e0163237.	1.1	8
106	Cross-sectional study of expression of divalent metal transporter-1, transferrin, and hepcidin in blood of smelters who are occupationally exposed to manganese. PeerJ, 2016, 4, e2413.	0.9	8
107	How Does an Occupational Neurologist Assess Welders and Steelworkers for a Manganese-Induced Movement Disorder? An International Team's Experiences in Guanxi, China, Part I. Journal of Occupational and Environmental Medicine, 2012, 54, 1432-1434.	0.9	7
108	Maternal linuron exposure alters testicular development in male offspring rats at the whole genome level. Toxicology, 2017, 389, 13-20.	2.0	7

#	Article	IF	CITATIONS
109	Distribution of Pb and Se in mouse brain following subchronic Pb exposure by using synchrotron X-ray fluorescence. NeuroToxicology, 2022, 88, 106-115.	1.4	7
110	Vanadium exposure-induced striatal learning and memory alterations in rats. NeuroToxicology, 2017, 62, 124-129.	1.4	6
111	Microdistribution of lead in human teeth using microbeam synchrotron radiation X-ray fluorescence (μ-SRXRF). X-Ray Spectrometry, 2017, 46, 19-26.	0.9	6
112	Cigarette Smoke Exposure to Pig Larynx in an Inhalation Chamber. Journal of Voice, 2019, 33, 846-850.	0.6	6
113	Threshold Effects of Total Copper Intake on Cognitive Function in US Older Adults and the Moderating Effect of Fat and Saturated Fatty Acid Intake. Journal of the Academy of Nutrition and Dietetics, 2021, 121, 2429-2442.	0.4	6
114	Systemic Copper Disorders Influence the Olfactory Function in Adult Rats: Roles of Altered Adult Neurogenesis and Neurochemical Imbalance. Biomolecules, 2021, 11, 1315.	1.8	6
115	Age-dependent decline of copper clearance at the blood-cerebrospinal fluid barrier. NeuroToxicology, 2022, 88, 44-56.	1.4	6
116	Reduction in Nesfatin-1 Levels in the Cerebrospinal Fluid and Increased Nigrostriatal Degeneration Following Ventricular Administration of Anti-nesfatin-1 Antibody in Mice. Frontiers in Neuroscience, 2021, 15, 621173.	1.4	5
117	Blood Harmane Concentrations in 497 Individuals Relative to Coffee, Cigarettes, and Food Consumption on the Morning of Testing. Journal of Toxicology, 2011, 2011, 1-6.	1.4	4
118	Blood harmane (1-methyl-9H-pyrido[3,4-b]indole) concentration in dystonia cases vs. controls. NeuroToxicology, 2014, 44, 110-113.	1.4	4
119	Subacute acrolein exposure to rat larynx in vivo. Laryngoscope, 2019, 129, E313-E317.	1.1	4
120	Blood'Ä,ìCSF Barrier in Iron Regulation and Manganese-Induced Parkinsonism. , 2005, , 413-436.		3
121	Systemic impact of trace elements on human health and diseases: Nutrition, toxicity, and beyond. Journal of Trace Elements in Medicine and Biology, 2020, 62, 126634.	1.5	3
122	Rare cases of severe life-threatening lead poisoning due to accident or chronic occupational exposure to lead and manganese: Diagnosis, treatment, and prognosis. Toxicology and Industrial Health, 2020, 36, 951-959.	0.6	3
123	Toxicology of choroid plexus: Special reference to metal-induced neurotoxicities. , 2001, 52, 89.		3
124	The association of bone and blood manganese with motor function in Chinese workers. NeuroToxicology, 2022, 88, 224-230.	1.4	2
125	Acute Nanoparticle Exposure to Vocal Folds: A Laboratory Study. Journal of Voice, 2017, 31, 662-668.	0.6	1
126	2018 Toxicological Sciences Papers of the Year. Toxicological Sciences, 2019, 168, 285-286.	1.4	0

#	Article	IF	CITATIONS
127	Meat Consumption and Meat Cooking Practices in Essential Tremor: A Population-Based Study in the Faroe Islands. Tremor and Other Hyperkinetic Movements, 2020, 10, 30.	1.1	Ο
128	Manganese Transport into the Brain: Putative Mechanisms. Me, 2008, 10, 695-700.	1.0	0
129	Pb Induces MCP-1 in the Choroid Plexus. Biology, 2022, 11, 308.	1.3	0