Oliver C Mullins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/934079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Modified Yen Model. Energy & amp; Fuels, 2010, 24, 2179-2207.	5.1	955
2	Advances in Asphaltene Science and the Yen–Mullins Model. Energy & Fuels, 2012, 26, 3986-4003.	5.1	789
3	Molecular Size and Structure of Asphaltenes from Various Sources. Energy & Fuels, 2000, 14, 677-684.	5.1	763
4	Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy. Journal of the American Chemical Society, 2015, 137, 9870-9876.	13.7	545
5	The Asphaltenes. Annual Review of Analytical Chemistry, 2011, 4, 393-418.	5.4	488
6	Asphaltene Molecular Size and Structure. Journal of Physical Chemistry A, 1999, 103, 11237-11245.	2.5	476
7	High-QUltrasonic Determination of the Critical Nanoaggregate Concentration of Asphaltenes and the Critical Micelle Concentration of Standard Surfactants. Langmuir, 2005, 21, 2728-2736.	3.5	251
8	Molecular size and weight of asphaltene and asphaltene solubility fractions from coals, crude oils and bitumen. Fuel, 2006, 85, 1-11.	6.4	234
9	The Overriding Chemical Principles that Define Asphaltenes. Energy & Fuels, 2001, 15, 972-978.	5.1	216
10	Determination of the nitrogen chemical structures in petroleum asphaltenes using XANES spectroscopy. Journal of the American Chemical Society, 1993, 115, 252-258.	13.7	210
11	Heavy Oil Based Mixtures of Different Origins and Treatments Studied by Atomic Force Microscopy. Energy & Fuels, 2017, 31, 6856-6861.	5.1	206
12	The Colloidal Structure of Crude Oil and the Structure of Oil Reservoirs. Energy & Fuels, 2007, 21, 2785-2794.	5.1	177
13	Two-Step Laser Mass Spectrometry of Asphaltenes. Journal of the American Chemical Society, 2008, 130, 7216-7217.	13.7	177
14	Nanoaggregates and Structureâ^'Function Relations in Asphaltenesâ€. Energy & Fuels, 2005, 19, 1282-1289.	5.1	173
15	Contrasting Perspective on Asphaltene Molecular Weight. This Comment vs the Overview of A. A. Herod, K. D. Bartle, and R. Kandiyoti. Energy & Fuels, 2008, 22, 1765-1773.	5.1	159
16	Molecular-Weight Distributions of Coal and Petroleum Asphaltenes from Laser Desorption/Ionization Experiments. Energy & Fuels, 2007, 21, 2863-2868.	5.1	150
17	Diffusivity of Asphaltene Molecules by Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry A, 2006, 110, 8093-8097.	2.5	146
18	Asphaltene Nanoaggregates Studied by Centrifugation. Energy & amp; Fuels, 2009, 23, 1194-1200.	5.1	146

#	Article	IF	CITATIONS
19	Clusters of Asphaltene Nanoaggregates Observed in Oilfield Reservoirs. Energy & Fuels, 2013, 27, 1752-1761.	5.1	146
20	Molecular size of asphaltene fractions obtained from residuum hydrotreatment⋆. Fuel, 2003, 82, 1075-1084.	6.4	135
21	Probing Order in Asphaltenes and Aromatic Ring Systems by HRTEM. Energy & Fuels, 2002, 16, 490-496.	5.1	134
22	Polycyclic Aromatic Hydrocarbons of Asphaltenes Analyzed by Molecular Orbital Calculations with Optical Spectroscopy. Energy & Fuels, 2007, 21, 256-265.	5.1	134
23	Determination of the chemical environment of sulphur in petroleum asphaltenes by X-ray absorption spectroscopy. Fuel, 1992, 71, 53-57.	6.4	133
24	Molecular Size of Asphaltene Solubility Fractions. Energy & amp; Fuels, 2003, 17, 498-503.	5.1	133
25	Asphaltene Molecular-Mass Distribution Determined by Two-Step Laser Mass Spectrometry. Energy & Fuels, 2009, 23, 1162-1168.	5.1	125
26	Coarse-Grained Molecular Simulations to Investigate Asphaltenes at the Oil–Water Interface. Energy & Fuels, 2015, 29, 1597-1609.	5.1	123
27	Nanoaggregates of Asphaltenes in a Reservoir Crude Oil and Reservoir Connectivity. Energy & Fuels, 2009, 23, 1178-1188.	5.1	121
28	On the formation and properties of asphaltene nanoaggregates and clusters by DC-conductivity and centrifugation. Fuel, 2011, 90, 2480-2490.	6.4	118
29	Molecular Orientation of Asphaltenes and PAH Model Compounds in Langmuirâ ^{~,} Blodgett Films Using Sum Frequency Generation Spectroscopy. Langmuir, 2011, 27, 6049-6058.	3.5	116
30	Critical Nanoaggregate Concentration of Asphaltenes by Direct-Current (DC) Electrical Conductivity. Energy & Fuels, 2009, 23, 1201-1208.	5.1	113
31	Quantum Yields of Crude Oils. Applied Spectroscopy, 1996, 50, 1563-1568.	2.2	112
32	Advances in the Flory–Huggins–Zuo Equation of State for Asphaltene Gradients and Formation Evaluation. Energy & Fuels, 2013, 27, 1722-1735.	5.1	112
33	Visible and Near-Infrared Fluorescence of Crude Oils. Applied Spectroscopy, 1995, 49, 754-764.	2.2	106
34	Theoretical Treatment of Asphaltene Gradients in the Presence of GOR Gradients. Energy & Fuels, 2010, 24, 3942-3949.	5.1	106
35	Comparison of Coal-Derived and Petroleum Asphaltenes by ¹³ C Nuclear Magnetic Resonance, DEPT, and XRS. Energy & Fuels, 2011, 25, 3068-3076.	5.1	103
36	Fluorescence Lifetime Studies of Crude Oils. Applied Spectroscopy, 1994, 48, 977-984.	2.2	102

#	Article	IF	CITATIONS
37	Laser-Based Mass Spectrometric Assessment of Asphaltene Molecular Weight, Molecular Architecture, and Nanoaggregate Number. Energy & Fuels, 2015, 29, 2833-2842.	5.1	102
38	The Electronic Absorption Edge of Petroleum. Applied Spectroscopy, 1992, 46, 1405-1411.	2.2	101
39	Overview of Asphaltene Nanostructures and Thermodynamic Applications. Energy & Fuels, 2020, 34, 15082-15105.	5.1	101
40	Electronic Absorption Edge of Crude Oils and Asphaltenes Analyzed by Molecular Orbital Calculations with Optical Spectroscopy. Energy & Fuels, 2007, 21, 944-952.	5.1	98
41	Asphaltene Molecular Size by Fluorescence Correlation Spectroscopy. Energy & Fuels, 2007, 21, 2875-2882.	5.1	95
42	Real-Time Determination of Filtrate Contamination During Openhole Wireline Sampling by Optical Spectroscopy. , 2000, , .		87
43	Carbon K-edge X-ray Raman spectroscopy supports simple, yet powerful description of aromatic hydrocarbons and asphaltenes. Chemical Physics Letters, 2003, 369, 184-191.	2.6	85
44	Impact of Capillary Pressure and Nanopore Confinement on Phase Behaviors of Shale Gas and Oil. Energy & Fuels, 2018, 32, 4705-4714.	5.1	82
45	Asphaltene Nanoaggregates Measured in a Live Crude Oil by Centrifugation. Energy & Fuels, 2009, 23, 4460-4469.	5.1	81
46	Laser-Based Mass Spectrometric Determination of Aggregation Numbers for Petroleum- and Coal-Derived Asphaltenes. Energy & Fuels, 2014, 28, 475-482.	5.1	81
47	Measured and Simulated Electronic Absorption and Emission Spectra of Asphaltenes. Energy & Fuels, 2009, 23, 1169-1177.	5.1	73
48	Sulfur Speciation in Different Kerogens by XANES Spectroscopy. Energy & Fuels, 2005, 19, 1971-1976.	5.1	72
49	Compound class oil fingerprinting techniques using comprehensive two-dimensional gas chromatography (GC×GC). Organic Geochemistry, 2010, 41, 1026-1035.	1.8	71
50	X-ray Raman Spectroscopy of Carbon in Asphaltene:Â Light Element Characterization with Bulk Sensitivity. Analytical Chemistry, 2000, 72, 2609-2612.	6.5	67
51	Sulfur Chemistry of Asphaltenes from a Highly Compositionally Graded Oil Column. Energy & Fuels, 2013, 27, 4604-4608.	5.1	67
52	Combining biomarker and bulk compositional gradient analysis to assess reservoir connectivity. Organic Geochemistry, 2010, 41, 812-821.	1.8	66
53	Orbitrap Mass Spectrometry: A Proposal for Routine Analysis of Nonvolatile Components of Petroleum. Energy & amp; Fuels, 2011, 25, 3077-3082.	5.1	63
54	Nanoaggregates of Diverse Asphaltenes by Mass Spectrometry and Molecular Dynamics. Energy & Fuels, 2017, 31, 9140-9151.	5.1	63

#	Article	IF	CITATIONS
55	Molecular Weight Measurement of UC8 Asphaltene Using APCI Mass Spectroscopy. Petroleum Science and Technology, 2004, 22, 787-798.	1.5	62
56	Gas-Oil Ratio of Live Crude Oils Determined by Near-Infrared Spectroscopy. Applied Spectroscopy, 2001, 55, 197-201.	2.2	60
57	Comparing Laser Desorption/Laser Ionization Mass Spectra of Asphaltenes and Model Compounds. Energy & Fuels, 2010, 24, 3589-3594.	5.1	60
58	Small Population of One to Three Fused-Aromatic Ring Moieties in Asphaltenes. Energy & Fuels, 1996, 10, 623-630.	5.1	59
59	Identification and quantification of alkene-based drilling fluids in crude oils by comprehensive two-dimensional gas chromatography with flame ionization detection. Journal of Chromatography A, 2007, 1148, 100-107.	3.7	58
60	Analysis of petroleum compositional similarity using multiway principal components analysis (MPCA) with comprehensive two-dimensional gas chromatographic data. Journal of Chromatography A, 2011, 1218, 2584-2592.	3.7	57
61	Applicability of the Langmuir Equation of State for Asphaltene Adsorption at the Oil–Water Interface: Coal-Derived, Petroleum, and Synthetic Asphaltenes. Energy & Fuels, 2015, 29, 3584-3590.	5.1	55
62	Near-Infrared Compositional Analysis of Gas and Condensate Reservoir Fluids at Elevated Pressures and Temperatures. Applied Spectroscopy, 2002, 56, 1615-1620.	2.2	53
63	Diffusivity of coal and petroleum asphaltene monomers by fluorescence correlation spectroscopy. Fuel, 2007, 86, 2016-2020.	6.4	53
64	Minimization of Fragmentation and Aggregation by Laser Desorption Laser Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2013, 24, 1116-1122.	2.8	53
65	MOLECULAR SIZE AND STRUCTURE OF ASPHALTENES. Petroleum Science and Technology, 2001, 19, 219-230.	1.5	52
66	Diffusion Model Coupled with the Flory–Huggins–Zuo Equation of State and Yen–Mullins Model Accounts for Large Viscosity and Asphaltene Variations in a Reservoir Undergoing Active Biodegradation. Energy & Fuels, 2015, 29, 1447-1460.	5.1	49
67	Asphaltene Molecular Size and Weight by Time-Resolved Fluorescence Depolarization. , 2007, , 17-62.		48
68	Nitrogen chemistry of kerogens and bitumens from x-ray absorption near-edge structure spectroscopy. Energy & Fuels, 1993, 7, 1128-1134.	5.1	47
69	Determination of Sulfur Species in Asphaltene, Resin, and Oil Fractions of Crude Oils. Applied Spectroscopy, 1998, 52, 1522-1525.	2.2	46
70	Rebuttal to comment by professors Herod, Kandiyoti, and Bartle on "Molecular size and weight of asphaltene and asphaltene solubility fractions from coals, crude oils and bitumen― Fuel, 2007, 86, 309-312.	6.4	46
71	Constant Asphaltene Molecular and Nanoaggregate Mass in a Gravitationally Segregated Reservoir. Energy & Fuels, 2014, 28, 3010-3015.	5.1	46
72	Analysis and Identification of Biomarkers and Origin of Color in a Bright Blue Crude Oil. Energy & Fuels, 2011, 25, 172-182.	5.1	44

#	Article	IF	CITATIONS
73	First Observation of the Urbach Tail in a Multicomponent Organic System. Applied Spectroscopy, 1992, 46, 354-356.	2.2	42
74	Downhole Fluid Analysis and Asphaltene Science for Petroleum Reservoir Evaluation. Annual Review of Chemical and Biomolecular Engineering, 2014, 5, 325-345.	6.8	42
75	Cluster of Asphaltene Nanoaggregates by DC Conductivity and Centrifugation. Energy & Fuels, 2014, 28, 5002-5013.	5.1	41
76	Asphaltene Densities and Solubility Parameter Distributions: Impact on Asphaltene Gradients. Energy & Fuels, 2016, 30, 9132-9140.	5.1	38
77	Oil Reservoir Characterization via Crude Oil Analysis by Downhole Fluid Analysis in Oil Wells with Visibleâ^'Near-Infrared Spectroscopy and by Laboratory Analysis with Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Fuels, 2006, 20, 2448-2456.	5.1	37
78	Optical Interrogation of Aromatic Moieties in Crude Oils and Asphaltenes. , 1998, , 21-77.		35
79	Asphaltene Grading and Tar Mats in Oil Reservoirs. Energy & Fuels, 2012, 26, 1670-1680.	5.1	34
80	Heuristics for Equilibrium Distributions of Asphaltenes in the Presence of GOR Gradients. Energy & Fuels, 2014, 28, 4859-4869.	5.1	34
81	On the Nanofiltration of Asphaltene Solutions, Crude Oils, and Emulsions. Energy & Fuels, 2010, 24, 5028-5037.	5.1	32
82	A Geological Model for the Origin of Fluid Compositional Gradients in a Large Saudi Arabian Oilfield: An Investigation by Two-Dimensional Gas Chromatography (GC × GC) and Asphaltene Chemistry. Energy & Fuels, 2015, 29, 5666-5680.	5.1	32
83	Linearity of Near-Infrared Spectra of Alkanes. Applied Spectroscopy, 2000, 54, 624-629.	2.2	31
84	Visible–Near-Infrared Spectroscopy by Downhole Fluid Analysis Coupled with Comprehensive Two-Dimensional Gas Chromatography To Address Oil Reservoir Complexity. Energy & Fuels, 2008, 22, 496-503.	5.1	31
85	New Downhole-Fluid-Analysis Tool for Improved Reservoir Characterization. SPE Reservoir Evaluation and Engineering, 2008, 11, 1107-1116.	1.8	31
86	Integrating comprehensive two-dimensional gas chromatography and downhole fluid analysis to validate a spill-fill sequence of reservoirs with variations of biodegradation, water washing and thermal maturity. Fuel, 2017, 191, 538-554.	6.4	31
87	Near-Infrared Spectral Analysis of Gas Mixtures. Applied Spectroscopy, 2002, 56, 593-598.	2.2	30
88	Rebuttal to Strausz et al. Regarding Time-Resolved Fluorescence Depolarization of Asphaltenes. Energy & Fuels, 2009, 23, 2845-2854.	5.1	30
89	Applicability of simple asphaltene thermodynamics for asphaltene gradients in oilfield reservoirs: The Flory-Huggins-Zuo Equation of State with the Yen-Mullins model. Fuel, 2018, 221, 216-232.	6.4	30
90	Triplet Electronic Spin States of Crude Oils and Asphaltenes. Energy & amp; Fuels, 2011, 25, 2065-2075.	5.1	28

#	Article	IF	CITATIONS
91	Asphaltene gradients and tar mat formation in reservoirs under active gas charging. Fluid Phase Equilibria, 2012, 315, 91-98.	2.5	28
92	Yen–Mullins Model Applies to Oilfield Reservoirs. Energy & Fuels, 2020, 34, 14074-14093.	5.1	26
93	X-Ray Raman Spectroscopy—A New Tool to Study Local Structure of Aromatic Hydrocarbons and Asphaltenes. Petroleum Science and Technology, 2004, 22, 863-875.	1.5	25
94	Permeable Tar Mat Formation Within the Context of Novel Asphaltene Science. , 2012, , .		25
95	A Simple Relation between Solubility Parameters and Densities for Live Reservoir Fluids. Journal of Chemical & Engineering Data, 2010, 55, 2964-2969.	1.9	24
96	Surface Chemistry and Spectroscopy of UG8 Asphaltene Langmuir Film, Part 1. Langmuir, 2010, 26, 15257-15264.	3.5	24
97	Singlet–Triplet and Triplet–Triplet Transitions of Asphaltene PAHs by Molecular Orbital Calculations. Energy & Fuels, 2013, 27, 5017-5028.	5.1	24
98	Surface Chemistry and Spectroscopy of UG8 Asphaltene Langmuir Film, Part 2. Langmuir, 2010, 26, 15265-15271.	3.5	23
99	New thermodynamic modeling of reservoir crude oil. Fuel, 2014, 117, 839-850.	6.4	23
100	Combined Petroleum System Modeling and Comprehensive Two-Dimensional Gas Chromatography To Improve Understanding of the Crude Oil Chemistry in the Llanos Basin, Colombia. Energy & Fuels, 2015, 29, 4755-4767.	5.1	23
101	Reservoir Fluid Geodynamics: The Chemistry and Physics of Oilfield Reservoir Fluids after Trap Filling. Energy & Fuels, 2017, 31, 13088-13119.	5.1	23
102	Real Time Integration of Reservoir Modeling and Formation Testing. , 2009, , .		22
103	Surface enhanced Raman spectroscopy of polycyclic aromatic hydrocarbons and molecular asphaltenes. Chemical Physics Letters, 2015, 620, 139-143.	2.6	22
104	Asphaltene Gravitational Gradient in a Deepwater Reservoir as Determined by Downhole Fluid Analysis. , 2007, , .		21
105	Black Oil, Heavy Oil and Tar in One Oil Column Understood by Simple Asphaltene Nanoscience. , 2012, , .		20
106	Gravitational Gradient of Asphaltene Molecules in an Oilfield Reservoir with Light Oil. Energy & Fuels, 2018, 32, 4911-4924.	5.1	20
107	Coarse and Ultra-Fine Scale Compartmentalization by Downhole Fluid Analysis. , 2005, , .		19
108	Predicting Downhole Fluid Analysis Logs to Investigate Reservoir Connectivity. , 2007, , .		19

Predicting Downhole Fluid Analysis Logs to Investigate Reservoir Connectivity. , 2007, , . 108

#	Article	IF	CITATIONS
109	Molecular Size Determination of Coal-Derived Asphaltene by Fluorescence Correlation Spectroscopy. Applied Spectroscopy, 2011, 65, 1348-1356.	2.2	19
110	Asphaltene Nanoscience and Reservoir Fluid Gradients, Tar Mat Formation, and the Oil-Water Interface. , 2013, , .		19
111	Heavy Oil and Tar Mat Characterization Within a Single Oil Column Utilizing Novel Asphaltene Science. , 2012, , .		18
112	A multicomponent diffusion model for gas charges into oil reservoirs. Fuel, 2016, 180, 384-395.	6.4	18
113	Surface Activity of an Amphiphilic Association Structure. Journal of Dispersion Science and Technology, 2005, 26, 513-515.	2.4	17
114	The Critical Role of Asphaltene Gradients and Data Integration in Reservoir Fluid Geodynamics Analysis. , 2017, , .		17
115	Equation-of-State-Based Downhole Fluid Characterization. SPE Journal, 2011, 16, 115-124.	3.1	16
116	A Study of Connectivity and Baffles in a Deepwater Gulf of Mexico Reservoir Linking Downhole Fluid Analysis and Geophysics. , 2017, , .		16
117	Investigation of density inversion induced by gas charges into oil reservoirs using diffusion equations. Energy, 2016, 100, 199-216.	8.8	15
118	Biodegradation and water washing in a spill-fill sequence of oilfields. Fuel, 2019, 237, 707-719.	6.4	15
119	Downhole Fluid Analysis and Asphaltene Nanoscience Coupled with VIT for Risk Reduction in Black Oil Production. , 2012, , .		14
120	Analysis of Asphaltene Instability Using Diffusive and Thermodynamic Models during Gas Charges into Oil Reservoirs. Energy & Fuels, 2017, 31, 3717-3728.	5.1	14
121	Structure-Solubility Relationships in Coal, Petroleum, and Immature Source-Rock-Derived Asphaltenes. Energy & Fuels, 2020, 34, 10825-10836.	5.1	14
122	Structure–Dynamic Function Relations of Asphaltenes. Energy & Fuels, 2021, 35, 13610-13632.	5.1	14
123	DFA Asphaltene Gradients for Assessing Connectivity in Reservoirs under Active Gas Charging. , 2011, , .		13
124	Reservoir Fluid Geodynamics; The Link Between Petroleum Systems and Production Concerns Relating to Fluids and Tar Distributions in Reservoirs. , 2016, , .		13
125	Impact of a Secondary Condensate Charge into an Oil Reservoir Evaluated by Downhole Fluid Analysis, Core Analysis, and Production. , 2016, , .		12
126	Time of flight-secondary ion mass spectrometry (TOF-SIMS) study of diverse asphaltenes. Fuel, 2018, 220, 638-644.	6.4	12

#	Article	IF	CITATIONS
127	Analysis of Downhole Asphaltene Gradients in Oil Reservoirs with a New Bimodal Asphaltene Distribution Function. Journal of Chemical & Engineering Data, 2011, 56, 1047-1058.	1.9	11
128	The dynamic Flory-Huggins-Zuo equation of state. Energy, 2015, 91, 430-440.	8.8	11
129	Fluid distributions during light hydrocarbon charges into oil reservoirs using multicomponent Maxwell-Stefan diffusivity in gravitational field. Fuel, 2017, 209, 211-223.	6.4	11
130	Using Formation Testing and Asphaltene Gradient Modeling to Guide G&G Modeling and Field Development - A Fault Block Migration Study. , 2018, , .		11
131	Understanding Reservoir Fluid Dynamic Processes by Using Diffusive Models. , 2016, , .		10
132	Bitumen and Tar Deposition and Tar Mat Formation Accounted for by Multiple Charging, Trap Filling and Fluid Geodynamics. , 2016, , .		10
133	Reservoir Implications of a Spill-Fill Sequence of Reservoir Charge Coupled with Viscosity and Asphaltene Gradients from a Combination of Water Washing and Biodegradation. , 2017, , .		10
134	Analysis of kerogens and model compounds by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Fuel, 2021, 286, 119373.	6.4	10
135	Mapping and Modeling Large Viscosity and Asphaltene Variations in a Reservoir Undergoing Active Biodegradation. , 2014, , .		9
136	DFA Connectivity Advisor: A New Workflow to Use Measured and Modeled Fluid Gradients for Analysis of Reservoir Connectivity. , 2014, , .		9
137	Compartments, Connectivity & Baffling Analyzed by the Extent of Equilibration of Asphaltene Gradients Using DFA. , 2016, , .		9
138	Asphaltenes. Springer Handbooks, 2017, , 221-250.	0.6	9
139	Validating of the Reservoir Connectivity and Compartmentalization with the CO2 Compositional Gradient and Mass Transportation Simulation Concepts. , 2011, , .		8
140	Evaluation of Reservoir Connectivity from Downhole Fluid Analysis, Asphaltene Equation of State Model and Advanced Laboratory Fluid Analyses. , 2012, , .		8
141	Delineation of Gravitational Instability Induced by Gas Charges into Oil Reservoirs Using Diffusion and Flory-Huggins-Zuo Equations. , 2016, , .		8
142	Asphaltene Gradient Analysis by DFA Coupled with Geochemical Analysis by GC and GCxGC Indicate Connectivity in Agreement with One Year of Production in a Norwegian Oilfield. , 2018, , .		8
143	Carbon X-ray Raman Spectroscopy of PAHs and Asphaltenes. , 2007, , 139-155.		8
144	CONNECTIVITY, ASPHALTENE, MOLECULES, ASPHALTENE GRADIENTS AND CO2 GRADIENTS IN A BRAZILIAN CARBONATE PRESALT FIELD. , 0, , .		8

#	Article	IF	CITATIONS
145	Role of Asphaltene Origin in Its Adsorption at Oil–Water Interfaces. Energy & Fuels, 2022, 36, 8749-8759.	5.1	8
146	The Dynamics of Fluids In Reservoirs. , 2013, , .		7
147	Characterization of Asphaltene Transport over Geologic Time Aids in Explaining the Distribution of Heavy Oils and Solid Hydrocarbons in Reservoirs. , 2014, , .		7
148	Reservoir Fluid Geodynamics in Brazilian Presalt Carbonate Field. , 2019, , .		6
149	Reservoir Fluid Geodynamics, a New Way to Evaluate the Reservoir Connectivity and Crude Oil Alteration with Late Gas Charge. , 2019, , .		6
150	ANALYSIS OF LATERAL FLUID GRADIENTS FROM DFA MEASUREMENTS AND SIMULATION OF RESERVOIR FLUID MIXING PROCESSES OVER GEOLOGIC TIME. , 2020, , .		5
151	DIVERSE FLUID GRADIENTS ASSOCIATED WITH BIODEGRADATION OF CRUDE OIL. , 0, , .		4
152	Advanced Reservoir Evaluation Using Downhole Fluid Analysis and Asphaltene Flory-Huggins-Zuo EOS. , 2013, , .		3
153	Variation of Asphaltene Onset Pressure Due to Reservoir Fluid Disequilibrium. , 2014, , .		3
154	Asphaltene Chemistry Across a Large Field in Saudi Arabia. , 2017, , .		3
155	A Quantitative Study on the Evolution of the Asphaltene Distribution during Gas Charge Processes. , 2017, , .		3
156	Sulfur Chemical Moieties in Carbonaceous Materials. , 2007, , 157-188.		3
157	Sulfur and Nitrogen Chemical Speciation in Crude Oils and Related Carbonaceous Materials. Advances in Chemical and Materials Engineering Book Series, 2016, , 53-83.	0.3	3
158	Wax-Out Cryo-trapping: A New Trap-Filling Process in Fluid Migration to Oilfields. Energy & Fuels, 2022, 36, 8844-8852.	5.1	3
159	Asphaltene Gradients and Connectivity Analysis in Reservoirs, Asphaltene Onset Pressure, Bitumen and Tar Mats All Treated Within a Simple, Unified Chemistry Treatment. , 2018, , .		2
160	Reservoir Implications of Measured Thermodynamic Equilibrium of Crude Oil Components: Gases, Liquids, the Solid Asphaltenes, and Biomarkers. , 2020, , .		2
161	Reservoir fluid geodynamics. , 2022, , 1-39.		2
162	Heavy End Evaluation in Oils and Associated Asphaltene Deposits from Two Adjacent Reservoirs by High-Resolution Mass Spectrometry. Energy & Fuels, 2022, 36, 8866-8878.	5.1	2

#	Article	IF	CITATIONS
163	GC×GC Analysis of Novel 2α-Methyl Biomarker Compounds from a Large Middle East Oilfield. Energy & Fuels, 2022, 36, 8853-8865.	5.1	2
164	Advanced Reservoir and Tar Mat Evaluation Using Downhole Fluid Analysis and Asphaltene Flory-Huggins-Zuo EoS. , 2013, , .		1
165	Simple Asphaltene Thermodynamics, Oilfield Reservoir Evaluation, and Reservoir Fluid Geodynamics. , 2018, , 1-38.		1
166	Downhole Fluid Analysis and Gas Chromatography; a Powerful Combination for Reservoir Evaluation. Petrophysics, 2018, 59, 649-671.	0.3	1
167	A Novel Reservoir Forming Mechanism with Wax-Out Cryo Trapping. , 2022, , .		1
168	Modeling Viscous Oil and Tar Mat Formation from Nanoscale to Macroscale. , 2022, , .		1
169	Development of a Downhole Measurement System for Phase Behavior of Reservoir Crude Oils and Retrograde Condensates. Energy & Fuels, 2022, 36, 8624-8638.	5.1	1
170	Simple Asphaltene Thermodynamics, Oilfield Reservoir Evaluation, and Reservoir Fluid Geodynamics. , 2020, , 1649-1686.		0